To see the other types of publications on this topic, follow the link: Diamagnetismo.

Journal articles on the topic 'Diamagnetismo'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diamagnetismo.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dos Santos, Edine Silva, and Franz A. Farias. "Duas Descrições Lagrangeanas para a Eletrodinâmica de London." Sitientibus Série Ciências Físicas 14 (December 20, 2018): 1. http://dx.doi.org/10.13102/sscf.v14i0.5797.

Full text
Abstract:
A Eletrodinâmica de London é revisitada no contexto de duas descrições Lagrangianas. As equações de London descrevem o diamagnetismo extremo, característico dos supercondutores tipo I. Uma descrição Lagrangeana, em um primeiro caso, é estabelecida utilizando um multiplicador de Lagrange à Lagrangeana de Maxwell, enquanto na segunda descrição se utiliza a Lagrangeana de Proca. Mostramos que existe uma equivalência entre as duas Lagrangeanas e discutimos algumas das consequências dessa equivalência.
APA, Harvard, Vancouver, ISO, and other styles
2

Moreno Castro, Antonio Javier. "Viabilidad para hacer un dispositivo de destrucción selectiva de manera remota de tejidos orgánicos." La Técnica: Revista de las Agrociencias. ISSN 2477-8982, no. 11 (December 2, 2013): 42. http://dx.doi.org/10.33936/la_tecnica.v0i11.563.

Full text
Abstract:
En este artículo se explica la viabilidad para crear un dispositivo capaz de controlar la absorbancia a las radiaciones electromagnéticas de los tejidos orgánicos a través de la anisotropía óptica de ciertas nanoparticulas/biomoléculas que lo constituyan, para una destrucción de manera remota de tejidos (Device of selectivetissuesdestroy -DSTD). Esto se hará mediante el control de la entropía topológica de las líneas de campo magnético (MFL), en un espacio confinado, a través de un control parcial de los campos magnéticos caóticos (CMF). Esto junto con la capacidad de orientación de ciertas nanoparticulas, nos permitirá crear un control en la absorbancia de las frecuencias ópticas. Para que finalmente estos mecanismos nos proporcionen las herramientas para la mejora de varias técnicas actualmente en práctica de ablación por hipertermia, biomarcadores, dosificación de fármacos y otras. Palabras claves: Ablación por hipertermia, anisotropía de nanoparticulas, diamagnetismo, campos magnéticos caóticos, imagen por resonancia magnética nuclear (IRM).
APA, Harvard, Vancouver, ISO, and other styles
3

Santos, Abraão L. dos, Adriana G. Presotto, Mário P.C. Júnior, Gilberto A. de Brito, Cláudio L. Carvalho, and Rafael Zadorosny. "Experimento demonstrativo de levitação supercondutora: Ferramenta para problematização de conceitos físicos." Revista Brasileira de Ensino de Física 37, no. 2 (June 2015): 2505–1. http://dx.doi.org/10.1590/s1806-11173721751.

Full text
Abstract:
<p>Em meados da década de 1980, os ditos supercondutores cerâmicos foram descobertos. Estes materiais se destacam por possuírem temperaturas de transição superiores à do nitrogênio líquido (<italic>T</italic> = 77 K). Este líquido criogênico possui um custo e facilidade de obtenção muito mais vantajosos se comparado com o hélio líquido (<italic>T</italic> = 4, 2 K). Assim, as possibilidades de aplicações desses materiais se ampliaram. Tais aplicações se adequam, em geral, aos esforços por buscas de fontes de energia limpas e a estruturação de uma sociedade sustentável por conta das propriedades dos supercondutores (por exemplo, resistividade nula e diamagnetismo perfeito). Neste trabalho apresentaremos a montagem de um experimento de levitação supercondutora que pode ser usado em problematizações a alunos do ensino médio além de incentivá-los a optarem por uma carreira científica.</p>
APA, Harvard, Vancouver, ISO, and other styles
4

Ferreira, G. F. Leal. "O sentido físico dos campos B e H." Revista Brasileira de Ensino de Física 23, no. 2 (June 2001): 252–55. http://dx.doi.org/10.1590/s1806-11172001000200017.

Full text
Abstract:
Mostra-se que, embora seja o campo de indução <img src="http:/img/fbpe/rbef/v23n2/sbgvec.gif" align="absmiddle"> o campo fundamental, é o campo <img src="http:/img/fbpe/rbef/v23n2/shgvec.gif" align="absmiddle"> o campo magnetizante no para e no ferromagnetismo, os quais se realizam pela orientação de dipolos magnéticos. Já no diamagnetismo, cujo caso extremo ocorre nos materiais em estado supercondutor, dependente da ação da induçaão eletromagnética, o campo indutor é o de indução, <img src="http:/img/fbpe/rbef/v23n2/sbgvec.gif" align="absmiddle">. Discute-se a obtenção das relações <img src="http:/img/fbpe/rbef/v23n2/sbgvec.gif" align="absmiddle"> = <img src="http:/img/fbpe/rbef/v23n2/shgvec.gif" align="absmiddle"> + 4pi<img src="http:/img/fbpe/rbef/v23n2/smgvec.gif" align="absmiddle"> fundamentais, e <img src="http:/img/fbpe/rbef/v23n2/sdgvec.gif" align="absmiddle"> = <img src="http:/img/fbpe/rbef/v23n2/segvec.gif" align="absmiddle"> + 4pi<img src="http:/img/fbpe/rbef/v23n2/spgvec.gif" align="absmiddle"> e as diferenças conceituais entre elas. O efeito desmagnetizante e o statusdascorrentes de Ampère são também abordados.
APA, Harvard, Vancouver, ISO, and other styles
5

Batyev, E. G. "Pauli paramagnetism and Landau diamagnetism." Uspekhi Fizicheskih Nauk 179, no. 12 (2009): 1333. http://dx.doi.org/10.3367/ufnr.0179.200912i.1333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Willems, Paul L. "Demonstrating diamagnetism." Physics Teacher 35, no. 8 (November 1997): 463. http://dx.doi.org/10.1119/1.2344766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Srivastava, Y., and A. Widom. "Gravitational diamagnetism." Physics Letters B 280, no. 1-2 (April 1992): 52–54. http://dx.doi.org/10.1016/0370-2693(92)90771-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rigamonti, A., A. Lascialfari, L. Romanò, A. Varlamov, and I. Zucca. "Superconducting Fluctuating Diamagnetism Versus Precursor Diamagnetism in Heterogeneous Superconductors." Journal of Superconductivity 18, no. 5-6 (November 2005): 763–67. http://dx.doi.org/10.1007/s10948-005-0077-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

FRAUENDORF, S., V. V. PASHKEVICH, and S. M. REIMANN. "MAGNETIC PROPERTIES OF SODIUM CLUSTERS." Surface Review and Letters 03, no. 01 (February 1996): 441–45. http://dx.doi.org/10.1142/s0218625x96000796.

Full text
Abstract:
Axial and triaxial shapes of Na clusters are determined by means of the shell-correction method.1 The orbital paramagnetism and the diamagnetism of small Na clusters are calculated. Odd axial clusters may have substantial orbital paramagnetic moments, which are quenched for triaxial shapes. Even clusters show diamagnetism, which is maximal for spherical and attenuated for deformed shape.
APA, Harvard, Vancouver, ISO, and other styles
10

Vekilov, Yu Kh, E. I. Isaev, and B. Johansson. "Diamagnetism in quasicrystals." Solid State Communications 133, no. 7 (February 2005): 473–75. http://dx.doi.org/10.1016/j.ssc.2004.11.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Conery, Chris, L. F. Goodrich, and T. C. Stauffer. "More Diamagnetism Demonstrations." Physics Teacher 41, no. 2 (February 2003): 74–75. http://dx.doi.org/10.1119/1.1542039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bruch, L. W., and F. Weinhold. "Diamagnetism of helium." Journal of Chemical Physics 113, no. 19 (November 15, 2000): 8667–70. http://dx.doi.org/10.1063/1.1318766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

SAHA, ARNAB, SOURABH LAHIRI, and A. M. JAYANNAVAR. "CLASSICAL DIAMAGNETISM REVISITED." Modern Physics Letters B 24, no. 30 (December 10, 2010): 2899–910. http://dx.doi.org/10.1142/s0217984910025309.

Full text
Abstract:
The well-known Bohr–van Leeuwen Theorem states that the orbital diamagnetism of classical charged particles is identically zero in equilibrium. However, results based on real space–time approach using the classical Langevin equation predicts non-zero diamagnetism for classical unbounded (finite or infinite) systems. Here we show that the recently discovered Fluctuation Theorems, namely, the Jarzynski Equality or the Crooks Fluctuation Theorem surprisingly predicts a free energy that depends on magnetic field as well as on the friction coefficient, in outright contradiction to the canonical equilibrium results. However, in the cases where the Langevin approach is consistent with the equilibrium results, the Fluctuation Theorems lead to results in conformity with equilibrium statistical mechanics. The latter is demonstrated analytically through a simple example that has been discussed recently.
APA, Harvard, Vancouver, ISO, and other styles
14

JANA, DEBNARAYAN. "UNIVERSAL DIAMAGNETISM: EXACT RESULTS AND APPLICATIONS." International Journal of Modern Physics B 15, no. 19n20 (August 10, 2001): 2811–20. http://dx.doi.org/10.1142/s0217979201006379.

Full text
Abstract:
Diamagnetism is a universal pheneomenon of spinless boson system at any finite temperature regardless of their interactions. We present here the exact, non-perturbative results of universal diamagnetism of charged scalar fields at any finite temperature. As an application, we study the effect of anisotropy of two coherence lengths on diamagnetic susceptibility of Cooper pairs in an arbitrary d-dimensions above the transition temperature.
APA, Harvard, Vancouver, ISO, and other styles
15

Cahaya, Adam Badra. "Paramagnetic and Diamagnetic Susceptibility of Infinite Quantum Well." Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics 3, no. 2 (December 31, 2020): 61–67. http://dx.doi.org/10.15408/fiziya.v3i2.18119.

Full text
Abstract:
Paramagnetism and diamagnetism of a material characterized by its magnetic susceptibility. When a material is exposed to an external magnetic field, magnetic susceptibility is defined as the ratio of the induced magnetization and the magnetic field. A paramagnetic material has magnetic susceptibility with positive sign. On the other hand, a diamagnetic material has magnetic susceptibility with negative sign. Atomically, paramagnetic materials consist of atoms that has orbital with unpaired electrons. Theoretical study of paramagnetic susceptibility and diamagnetic susceptibility are well described by Pauli paramagnetism and Landau diamagnetism, respectively. Although paramagnetism and diamagnetism are among the simplest magnetic properties of material that are studied in basic physics, theoretical derivations of Pauli paramagnetic and Landau diamagnetic susceptibility require second quantization formalism of quantum mechanics. We aim to discuss the paramagnetic and diamagnetic susceptibilities for simple three-dimensional quantum well using first quantization formalism.
APA, Harvard, Vancouver, ISO, and other styles
16

Bernardi, E., A. Lascialfari, A. Rigamonti, L. Romanò, Vincenzo Iannotti, G. Ausanio, and Carlo Luponio. "Fluctuating Diamagnetism in the Critical Region of the Superconducting Transition in Lead Nanoparticles." Advances in Science and Technology 47 (October 2006): 98–103. http://dx.doi.org/10.4028/www.scientific.net/ast.47.98.

Full text
Abstract:
High resolution SQUID magnetization measurements in Lead nanoparticles are presented and discussed in terms of the fluctuation-related diamagnetism in the critical region of the transition to the superconducting state, where the first-order fluctuation theory breaks down. Exact expressions of the magnetization are derived from the Ginzburg-Landau functional in zerodimensional condition (i.e. for grain size lesser than the coherence length) and are used to achieve insights on the properties of the critical fluctuating diamagnetism.
APA, Harvard, Vancouver, ISO, and other styles
17

HOTA, R. L. "THEORY OF MAGNETIZATION IN Pb1-xMnxTe AND Pb1-xEuxTe." International Journal of Modern Physics B 18, no. 20n21 (August 30, 2004): 2923–43. http://dx.doi.org/10.1142/s0217979204026147.

Full text
Abstract:
We present in this work a theory of magnetization (M) in diluted magnetic semiconductors and express it as sum of contributions due to magnetic impurities (M i ) and band effects which include lattice diamagnetism (M dia ) and spin density due to carriers (M c ). In addition to the contribution of isolated magnetic ions (Ms), M i includes the contributions of three types of small clusters: pairs (M p ), open triplets (M ot ) and closed triplets (M ct ). The contributions due to impurity spin interactions were calculated using modified Heisenberg's Hamiltonian as applicable to these clusters within the nearest neighbor interaction approximation. The band effects include contributions due to lattice diamagnetism and spin density due to carriers. The lattice diamagnetism χ dia was calculated using a two band model for the host system and a modified one for the alloy systems. χ dia for the host system compare well with the available experimental results. M c was calculated using a formula derived from first principles for an interacting electronic system. This is modified to calculate M c in the p-type Pb 1-x Mn x Te and Pb 1-x Eu x Te . Although the band effects are found to be small in the context of analyzing magnetization, they are intrinsically important in the sense that these quantities shed light on the nature of mechanisms contributing to lattice diamagnetism and the carrier spin densities in these systems.
APA, Harvard, Vancouver, ISO, and other styles
18

Young, W. C., A. B. Hassam, C. A. Romero-Talamás, R. F. Ellis, and C. Teodorescu. "Diamagnetism of rotating plasma." Physics of Plasmas 18, no. 11 (November 2011): 112505. http://dx.doi.org/10.1063/1.3660536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Matsubara, Keiko, Kiyoshi Kawamura, and Takuro Tsuzuku. "Diamagnetism of Carbon Fibers." Japanese Journal of Applied Physics 25, Part 1, No. 7 (July 20, 1986): 1016–20. http://dx.doi.org/10.1143/jjap.25.1016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yagasaki, K., and T. Nakama. "Diamagnetism in spinel compound." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 904–6. http://dx.doi.org/10.1016/j.jmmm.2006.10.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kotosonov, A. S. "Diamagnetism of pyrolytic carbons." Carbon 25, no. 5 (1987): 613–15. http://dx.doi.org/10.1016/0008-6223(87)90212-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stajic, Jelena. "Tuning diamagnetism with current." Science 358, no. 6366 (November 23, 2017): 1015.11–1017. http://dx.doi.org/10.1126/science.358.6366.1015-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Manoyan, J. M. "Diamagnetism of Wigner oscillators." Journal of Physics A: Mathematical and General 20, no. 10 (July 11, 1987): 3035–39. http://dx.doi.org/10.1088/0305-4470/20/10/045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cole, K. D. "Diamagnetism in a plasma." Physics of Plasmas 4, no. 6 (June 1997): 2072–80. http://dx.doi.org/10.1063/1.872373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dattagupta, Sushanta. "Peierls’ elucidation of Diamagnetism." Resonance 15, no. 5 (May 2010): 428–33. http://dx.doi.org/10.1007/s12045-010-0069-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Raju, Yuvaraja, Pattabiraman Krishnamurthi, P. L. Paulose, and Periakaruppan T. Manoharan. "Substrate-free copper nanoclusters exhibit super diamagnetism and surface based soft ferromagnetism." Nanoscale 9, no. 45 (2017): 17963–74. http://dx.doi.org/10.1039/c7nr07136a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kerim, Ablikim. "A study on the aromaticity and magnetic properties of triazolephorphyrazines." New J. Chem. 38, no. 8 (2014): 3783–90. http://dx.doi.org/10.1039/c4nj00311j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Carretta, P., A. Lascialfari, A. Rigamonti, A. Rosso, and A. A. Varlamov. "Fluctuation Effects and Anomalous Diamagnetism in YBCO124 and in Underdoped YBCO123 from Susceptibility and 63Cu Nuclear Relaxation." International Journal of Modern Physics B 13, no. 09n10 (April 20, 1999): 1123–29. http://dx.doi.org/10.1142/s0217979299001065.

Full text
Abstract:
The effects of superconducting fluctuations on the diamagnetic susceptibility and on the dynamical spin susceptibility involved in 63 Cu NMR-NQR relaxation rate are investigated in oriented powders of underdoped YBCO123 and of YBCO124 and compared with the ones in optimally doped YBCO123. While in this latter compound the fluctuation diamagnetism is well described by an anisotropic Ginzburg–Landau (GL) functional, in underdoped YBCO123 an anomalous diamagnetism is observed, with a strong enhancement of the susceptibility, in a wide temperature range. The magnetization curves cannot be described by any GL anisotropic functional. Also in YBCO124 the fluctuation diamagnetism is hard to describe by GL-type approach, although the enhancement is not as marked as in underdoped YBCO123. In YBCO124, and in underdoped YBCO123, the temperature and field dependences of the 63 Cu relaxation rates W appear different from the ones in underdoped YBCO123. No field-induced decrease of W is observed, as it is expected in the case of a changeover from s to d of the orbital simmetry of the fluctuating pairs or when the character of the fluctuations is different from the GL one.
APA, Harvard, Vancouver, ISO, and other styles
29

Mosiniewicz-Szablewska, Ewa, Antonio C. Tedesco, Piotr Suchocki, and Paulo C. Morais. "Magnetic studies of polylactic-co-glicolic acid nanocapsules loaded with selol and γ-Fe2O3 nanoparticles." Physical Chemistry Chemical Physics 22, no. 37 (2020): 21042–58. http://dx.doi.org/10.1039/d0cp02706e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gao, Qiao, Fengyan Li, Zhixia Sun, Lin Xu, and Minghui Sun. "A new type of photomagnetic system: photoinduced charge transfer in polyoxometalate-based organic–inorganic hybrid." Dalton Transactions 45, no. 6 (2016): 2422–25. http://dx.doi.org/10.1039/c5dt03748d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mauksch, Michael, and Svetlana B. Tsogoeva. "Spin-paired solvated electron couples in alkali–ammonia systems." Physical Chemistry Chemical Physics 20, no. 44 (2018): 27740–44. http://dx.doi.org/10.1039/c8cp05058a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Semenenko, Bogdan, and Pablo Esquinazi. "Diamagnetism of Bulk Graphite Revised." Magnetochemistry 4, no. 4 (November 22, 2018): 52. http://dx.doi.org/10.3390/magnetochemistry4040052.

Full text
Abstract:
Recently published structural analysis and galvanomagnetic studies of a large number of different bulk and mesoscopic graphite samples of high quality and purity reveal that the common picture assuming graphite samples as a semimetal with a homogeneous carrier density of conduction electrons is misleading. These new studies indicate that the main electrical conduction path occurs within 2D interfaces embedded in semiconducting Bernal and/or rhombohedral stacking regions. This new knowledge incites us to revise experimentally and theoretically the diamagnetism of graphite samples. We found that the c-axis susceptibility of highly pure oriented graphite samples is not really constant, but can vary several tens of percent for bulk samples with thickness t ≳ 30 μ m, whereas by a much larger factor for samples with a smaller thickness. The observed decrease of the susceptibility with sample thickness qualitatively resembles the one reported for the electrical conductivity and indicates that the main part of the c-axis diamagnetic signal is not intrinsic to the ideal graphite structure, but it is due to the highly conducting 2D interfaces. The interpretation of the main diamagnetic signal of graphite agrees with the reported description of its galvanomagnetic properties and provides a hint to understand some magnetic peculiarities of thin graphite samples.
APA, Harvard, Vancouver, ISO, and other styles
33

Batyev, Eduard G. "Pauli paramagnetism and Landau diamagnetism." Physics-Uspekhi 52, no. 12 (December 31, 2009): 1245–46. http://dx.doi.org/10.3367/ufne.0179.200912i.1333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wheatley, Joseph. "Diamagnetism in the Gauge theory." Physica C: Superconductivity 185-189 (December 1991): 1483–84. http://dx.doi.org/10.1016/0921-4534(91)90868-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hong, T. M., and J. M. Wheatley. "Diamagnetism in the dissipative regime." Physical Review B 43, no. 7 (March 1, 1991): 5702–5. http://dx.doi.org/10.1103/physrevb.43.5702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hernando, A., A. Ayuela, P. Crespo, and P. M. Echenique. "Giant diamagnetism of gold nanorods." New Journal of Physics 16, no. 7 (July 30, 2014): 073043. http://dx.doi.org/10.1088/1367-2630/16/7/073043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Batyev, E. G. "Diamagnetism of an excitonic insulator." JETP Letters 88, no. 3 (October 2008): 214–19. http://dx.doi.org/10.1134/s0021364008150150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jun-Hua Wu, Ji Hyun Min, Hong-Ling Liu, Ji Ung Cho, and Young Keun Kim. "Giant Diamagnetism in AuFe Nanoparticles." IEEE Transactions on Magnetics 45, no. 6 (June 2009): 2442–45. http://dx.doi.org/10.1109/tmag.2009.2018604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kirichenko, O. V., and V. G. Peschansky. "Diamagnetism of layered organic conductors." Low Temperature Physics 37, no. 1 (January 2011): 49–52. http://dx.doi.org/10.1063/1.3551530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Carati, A., F. Benfenati, and L. Galgani. "Relaxation properties in classical diamagnetism." Chaos: An Interdisciplinary Journal of Nonlinear Science 21, no. 2 (June 2011): 023134. http://dx.doi.org/10.1063/1.3594580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ovchinnikov, Alexander A. "Giant diamagnetism of carbon nanotubes." Physics Letters A 195, no. 1 (November 1994): 95–96. http://dx.doi.org/10.1016/0375-9601(94)90433-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shen, W. G., A. Berger, H. H. Bertschat, H. E. Mahnke, and B. Spellmeyer. "Strong local diamagnetism in bismuth." Physics Letters A 125, no. 9 (December 1987): 489–92. http://dx.doi.org/10.1016/0375-9601(87)90192-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Levintovich, I. Ya, and A. S. Kotosonov. "Diamagnetism of narrow-gap semiconductors." Soviet Physics Journal 30, no. 2 (February 1987): 153–56. http://dx.doi.org/10.1007/bf00898156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

N�meth, R. "Diamagnetism in small metal particles." Zeitschrift f�r Physik B Condensed Matter 81, no. 1 (February 1990): 89–93. http://dx.doi.org/10.1007/bf01454218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SHASTRY, B. SRIRAM. "MOTT TRANSITION IN THE HUBBARD MODEL." Modern Physics Letters B 06, no. 23 (October 10, 1992): 1427–38. http://dx.doi.org/10.1142/s0217984992001137.

Full text
Abstract:
In this article, I discuss W. Kohn’s criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting.miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the “extra phases” arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism), and the corresponding “happy fluxes” for the fermions identified. A curious result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A“spin-statistics” like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out.
APA, Harvard, Vancouver, ISO, and other styles
46

Askerov, B. M., S. R. Figarova, M. M. Makhmudov, and V. R. Figarov. "Diamagnetism of an electron gas in superlattices." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2100 (August 12, 2008): 3213–18. http://dx.doi.org/10.1098/rspa.2008.0092.

Full text
Abstract:
An investigation into the Landau diamagnetism of an electron gas in superlattices is presented. We find that the magnetization of a strongly degenerate electron gas changes its sign depending on the degree of band filling and magnetic field magnitude.
APA, Harvard, Vancouver, ISO, and other styles
47

Thu, L. M., and O. Voskoboynikov. "Unusual diamagnetism in semiconductor nano-objects." Physics Procedia 3, no. 2 (January 2010): 1133–37. http://dx.doi.org/10.1016/j.phpro.2010.01.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sökmen, İsmail, Fevzi Büyükkılıç, and Doǧan Demirhan. "Landau diamagnetism within nonextensive statistical thermodynamics." Chaos, Solitons & Fractals 13, no. 6 (May 2002): 1359–68. http://dx.doi.org/10.1016/s0960-0779(01)00146-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xu, Ning, Qiao Chen, Hongyu Tian, Baolin Wang, and Jianwen Ding. "Diamagnetism in zigzag hexagonal graphene rings." Physics Letters A 380, no. 9-10 (March 2016): 1102–4. http://dx.doi.org/10.1016/j.physleta.2016.01.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Burmistrov, Serguei N., and Leonid B. Dubovskii. "Anomalous diamagnetism at the twinning plane." Physica B: Condensed Matter 165-166 (August 1990): 205–6. http://dx.doi.org/10.1016/s0921-4526(90)80952-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography