Academic literature on the topic 'Dicritical digraphs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dicritical digraphs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dicritical digraphs"

1

Picasarri-Arrieta, Lucas, and Clément Rambaud. "Subdivisions in dicritical digraphs with large order or digirth." European Journal of Combinatorics 122 (December 2024): 104022. http://dx.doi.org/10.1016/j.ejc.2024.104022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Havet, Frédéric, Florian Hörsch, and Lucas Picasarri-Arrieta. "The 3-Dicritical Semi-Complete Digraphs." Electronic Journal of Combinatorics 32, no. 1 (2025). https://doi.org/10.37236/12820.

Full text
Abstract:
A digraph is $3$-dicritical if it cannot be vertex-partitioned into two sets inducing acyclic digraphs, but each of its proper subdigraphs can. We give a human-readable proof that the collection of 3-dicritical semi-complete digraphs is finite. Further, we give a computer-assisted proof of a full characterization of 3-dicritical semi complete digraphs. There are eight such digraphs, two of which are tournaments. We finally give a general upper bound on the maximum number of arcs in a $3$-dicritical digraph.
APA, Harvard, Vancouver, ISO, and other styles
3

Aboulker, Pierre, and Quentin Vermande. "Various Bounds on the Minimum Number of Arcs in a $k$-Dicritical Digraph." Electronic Journal of Combinatorics 31, no. 1 (2024). http://dx.doi.org/10.37236/11549.

Full text
Abstract:
The dichromatic number $\vec{\chi}(G)$ of a digraph $G$ is the least integer $k$ such that $G$ can be partitioned into $k$ acyclic digraphs. A digraph is $k$-dicritical if $\vec{\chi}(G) = k$ and each proper subgraph $H$ of $G$ satisfies $\vec{\chi}(H) \leq k-1$. 
 We prove various bounds on the minimum number of arcs in a $k$-dicritical digraph, a structural result on $k$-dicritical digraphs and a result on list-dicolouring. We characterise $3$-dicritical digraphs $G$ with $(k-1)|V(G)| + 1$ arcs. For $k \geq 4$, we characterise $k$-dicritical digraphs $G$ on at least $k+1$ vertices and w
APA, Harvard, Vancouver, ISO, and other styles
4

Havet, Frédéric, Lucas Picasarri‐Arrieta, and Clément Rambaud. "On the minimum number of arcs in 4‐dicritical oriented graphs." Journal of Graph Theory, July 29, 2024. http://dx.doi.org/10.1002/jgt.23159.

Full text
Abstract:
AbstractThe dichromatic number of a digraph is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph is ‐dicritical if and each proper subdigraph of satisfies . For integers and , we define (resp., ) as the minimum number of arcs possible in a ‐dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that . They also conjectured that there is a constant such that for and large enough. This conjecture is known to be true for . In this work, we prove that every 4‐dicritical oriented graph
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dicritical digraphs"

1

Picasarri-Arrieta, Lucas. "Coloration de graphes dirigés." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4023.

Full text
Abstract:
Cette thèse est dédiée à l'étude de la dicoloration, une notion de coloration pour les digraphes introduite par ErdH{o}s et Neumann-Lara à la fin des années 1970, ainsi que le paramètre qui lui est associé, à savoir le nombre dichromatique. Au cours des dernières décennies, ces deux notions ont permis de généraliser de nombreux résultats classiques de coloration de graphes. Nous commençons par donner différentes bornes sur le nombre dichromatique des digraphes dont le graphe sous-jacent est un graphe cordal. Ensuite, nous améliorons la borne donnée par le théorème de Brooks pour les digraphes
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!