Academic literature on the topic 'Dielectric/metal/dielectric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dielectric/metal/dielectric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dielectric/metal/dielectric"
Min Zhong, Min Zhong. "Influence of dielectric layer on negative refractive index and transmission of metal-dielectric-metal sandwiched metamaterials." Chinese Optics Letters 12, no. 4 (2014): 041601–41603. http://dx.doi.org/10.3788/col201412.041601.
Full textJinlong Zhang, Jinlong Zhang, Zhanshan Wang Zhanshan Wang, and Xinbin Cheng Xinbin Cheng. "Dispersive mirrors designed with mixed metal multilayer dielectric stacks." Chinese Optics Letters 10, no. 1 (2012): 013101–13103. http://dx.doi.org/10.3788/col201210.013101.
Full textYoon, Boram, Namkyu Lee, Ji-Yeul Bae, Fakadu Tolessa, and Hyung Hee Cho. "Metal-Dielectric-Metal Selective Emitter with Circular Hole Patterns for Thermo-photovoltaic." Transactions of the Korean Society of Mechanical Engineers - B 42, no. 5 (May 31, 2018): 357–63. http://dx.doi.org/10.3795/ksme-b.2018.42.5.357.
Full textHassan, Md Farhad, Rakibul Hasan Sagor, Infiter Tathfif, Kazi Sharmeen Rashid, and Mohammed Radoan. "An Optimized Dielectric-Metal-Dielectric Refractive Index Nanosensor." IEEE Sensors Journal 21, no. 2 (January 15, 2021): 1461–69. http://dx.doi.org/10.1109/jsen.2020.3016570.
Full textSellai, A., and M. Elzain. "Characteristics of a dielectric–metal–dielectric plasmonic waveguide." Physica E: Low-dimensional Systems and Nanostructures 41, no. 1 (October 2008): 106–9. http://dx.doi.org/10.1016/j.physe.2008.06.012.
Full textGomeniuk, Y. V. "Current transport mechanisms in metal – high-k dielectric – silicon structures." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 2 (May 30, 2012): 139–46. http://dx.doi.org/10.15407/spqeo15.02.139.
Full textYang, Fan, Shaojie Ma, Kun Ding, Shuang Zhang, and J. B. Pendry. "Continuous topological transition from metal to dielectric." Proceedings of the National Academy of Sciences 117, no. 29 (July 7, 2020): 16739–42. http://dx.doi.org/10.1073/pnas.2003171117.
Full textLopéz, I. Pérez, L. Cattin, D. T. Nguyen, M. Morsli, and J. C. Bernède. "Dielectric/metal/dielectric structures using copper as metal and MoO3 as dielectric for use as transparent electrode." Thin Solid Films 520, no. 20 (August 2012): 6419–23. http://dx.doi.org/10.1016/j.tsf.2012.06.056.
Full textFan, Yu-Wei, Hui-Huang Zhong, Zhi-Qiang Li, Han-Wu Yang, Ting Shu, Heng Zhou, Cheng-Wei Yuan, Jun Zhang, and Ling Luo. "A metal-dielectric cathode." Journal of Applied Physics 104, no. 2 (July 15, 2008): 023304. http://dx.doi.org/10.1063/1.2957054.
Full textFrenkel, A. "Thick metal-dielectric window." Electronics Letters 37, no. 23 (2001): 1374. http://dx.doi.org/10.1049/el:20010958.
Full textDissertations / Theses on the topic "Dielectric/metal/dielectric"
Han, Lei. "Investigation of Gate Dielectric Materials and Dielectric/Silicon Interfaces for Metal Oxide Semiconductor Devices." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/69.
Full textWaters, Cecilia Anne. "Optical, spectroscopic and dielectric properties of metal nanoparticles." Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433996.
Full textPowell, Jeffrey. "Strong-field driven dynamics of metal and dielectric nanoparticles." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38262.
Full textDepartment of Physics
Artem Rudenko
Christopher M. Sorensen
The motion of electrons in atoms, molecules, and solids in the presence of intense electromagnetic radiation is an important research topic in physics and physical chemistry because of its fundamental nature and numerous practical applications, ranging from precise machining of materials to optical control of chemical reactions and light-driven electronic devices. Mechanisms of light-matter interactions critically depend on the dimensions of the irradiated system and evolve significantly from single atoms or molecules to the macroscopic bulk. Nanoparticles provide the link between these two extremes. In this thesis, I take advantage of this bridge to study light-matter interactions as a function of nanoparticle size, shape, and composition. I present here three discrete, but interconnected, experiments contributing to our knowledge of nanoparticle properties and their response to intense, short-pulsed light fields. First, I investigate how individual nanoparticles interact with each other in solution, studying their temperature-dependent solubility. The interaction potential between 5.5nm gold nanoparticles, ligated by an alkanethiol was found to be -0.165eV, in reasonable agreement with a phenomenological model. The other two experiments explore ultrafast dynamics driven by intense femtosecond lasers in isolated, gas-phase metallic and dielectric nanoparticles. Photoelectron momentum imaging is applied to study the response of gold, silica, and gold-shell/silica-core nanoparticles (ranging from single to several hundred nanometers in size) with near-infrared (NIR), 25 fs laser pulses in the intensity range of 10¹¹ - 10¹⁴ W/cm². These measurements, which constitute the bulk of my graduate work, reveal the complex interplay between the external optical field and the induced near-field of the nanoparticle, resulting in the emission of very energetic electrons that are much faster than those emitted from isolated atoms or molecules exposed to the same light pulses. The highest photoelectron energies (“cutoffs”) were measured as a function of laser intensity, nanoparticle material and size. We found that the energy cutoffs increase monotonically with laser intensity and nanoparticle size, except for the gold/silica hybrid where the plasmon resonance response modifies this behavior at low intensities. The measured photoelectron spectra for metallic nanoparticles display a large energy enhancement over silica. Finally, the last part of this thesis explores the possibility to apply time-resolved x-ray scattering as a probe of the ultrafast dynamics in isolated nanoparticles driven by very intense (~10¹⁵ W/cm²) NIR laser radiation. To do this, I developed and built a nanoparticle source capable of injecting single, gas-phase nanoparticles with a narrow size distribution into the laser focus. We used femtosecond x-ray pulses from an x-ray free electron laser (XFEL) to map the evolution of the laser-irradiated nanoparticle. The ultrafast dynamics were observed in the single-shot x-ray diffraction patterns measured as a function of delay between the NIR and x-ray pulses, which allows for femtosecond temporal and nanometer spatial resolution. We found that the intense IR laser pulse rapidly ionizes the nanoparticle, effectively turning it into a nanoplasma within less than a picosecond, and observed signatures of the nanoparticle surface softening on a few hundred-femtosecond time scale.
Walasik, Wiktor. "Plasmon-soliton waves in metal-nonlinear dielectric planar structures." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284234.
Full textEl objetivo de esta tesis es la mejora en el conocimiento de los SP, así como el diseño de estructuras capaces de soportar estas ondas no lineales a bajos niveles de intensidad.En primer lugar, se ha estudiado la configuración correspondiente a un medio no lineal semiinfinito. Para ello se han desarrollado dos modelos semianalíticos basados en las ecuaciones de Maxwell. El primero trata la no linealidad de tipo Kerr de una manera sencilla, pero permite obtener expresiones analíticas para tanto los perfiles de campo como para las relaciones de dispersión no lineales. El segundo considera la no linealidad de un modo exacto. Esto permite obtener una expresión analítica de la mencionada relación de dispersión no lineal; sin embargo, los perfiles de campo han de ser obtenidos numéricamente. Se estudian también por primera vez estructuras de tres láminas (dieléctrico no lineal/metal/ dieléctrico lineal) en las que las constantes dieléctricas lineales del recubrimiento son distintas en ambos lados del metal. En estas estructuras se optimizan los parámetros y se obtienen pequeñas zonas con presencia de SP de baja energía. Puesto que los modelos están desarrollados para estructuras de cuatro láminas, se pueden estudiar por primera vez configuraciones con una lámina dieléctrica adicional situada entre el dieléctrico no lineal y el metal. Se proporcionan a su vez diagramas de dispersión y perfiles de campo para las anteriores estructuras en función de varios parámetros. La formulación semianalítica de los modelos permite hacer un rápido barrido del espacio fásico de los parámetros de la estructura. De este modo, se muestran configuraciones de cuatro láminas con unos parámetros realistas para la creación de los citados SP de baja energía.En segundo lugar, se han estudiado las guías de onda metálicas no lineales (GOMNL), en las que un núcleo dieléctrico no lineal de tamaño finito es intercalado entre dos láminas metálicas. Para ello se han desarrollado de nuevo dos modelos basados en las ecuaciones de Maxwell. El primero trata la no linealidad de tipo Kerr de un modo sencillo, pero proporciona expresiones analíticas para los perfiles de campo y las relaciones de dispersión no lineales mediante funciones elípticas de Jacobi. Por otra parte, el segundo modelo trata la no linealidad de tipo Kerr de un modo exacto y proporciona una condición analítica para la eliminación de una de las dimensiones del espacio fásico en el cual las soluciones son buscadas numéricamente. A su vez se estudian las curvas de dispersión así como sus posibles transformaciones de modo asociadas para las GOMNL. Además de los modos de primer orden típicos en este tipo de estructuras, se muestra la existencia de modos de orden superior. Todos los modos de las GOMNL pueden ser divididos en dos familias: la de los modos simétricos y antisimétricos con nodos que se asemejan a los modos lineales de una guía de onda metálica lineal modificada; y la de los modos simétricos y asimétricos sin nodos y que no se asemejan a ningún tipo de modos lineales. En esta última familia, los modos simétricos aparecen a través de una bifurcación silla-nodo y los asimétricos a través de una bifurcación de Hopf. Se estudian también los efectos producidos sobre los diagramas de dispersión al variar el tamaño del núcleo y el contraste dieléctrico entre el núcleo y el recubrimiento metálico.
Owens, Daniel Thomas. "Linear and nonlinear optical properties of metal-dielectric multilayer structures." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37235.
Full textRees, Caroline Susan. "Electrical conduction and dielectric breakdown in the heavy metal azides." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280434.
Full textKulkarni, Shashank Dilip. "MoM modeling of metal-dielectric structures using volume integral equations." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0506104-111936/.
Full textKim, Kwang-Hyon. "Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16495.
Full textThis work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.
Hu, Bing. "FABRICATION AND STUDY OF MOLECULAR DEVICES AND PHOTOVOLTAIC DEVICES BY METAL/DIELECTRIC/METAL STRUCTURES." UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/222.
Full textGadsdon, Martyn Richard. "The optical response of rectangular metallic gratings and metal/dielectric multilayers." Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/71987.
Full textBooks on the topic "Dielectric/metal/dielectric"
He, Ming, and Toh-Ming Lu. Metal-Dielectric Interfaces in Gigascale Electronics. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1812-2.
Full textHe, Ming. Metal-dielectric interfaces in gigascale electronics: Thermal and electrical stability. New York: Springer, 2012.
Find full textNonlinear optics of random media: Fractal composites and metal-dielectric films. Berlin: Springer, 2000.
Find full textFilmtronics. Spin-on glasses: Spin-on dielectric materials that fill your needs : inter metal and inter level dielectric planarization : revision #5, June 1998. Butler, Pa: Filmtronics, 1998.
Find full textFrom coherent tunneling to relaxation: Dissipative quantum dynamics of interacting defects. Berlin: Springer, 1997.
Find full textHori, Takashi. Gate dielectrics and MOS ULSIs: Principles, technologies, and applications. Berlin: Springer, 1997.
Find full textShalaev, Vladimir M., and Audrey K. Sarychev. Optical Properties of Random Metal-Dielectric Films. World Scientific Publishing Company, 2007.
Find full textLu, Toh-Ming, and Ming He. Metal-Dielectric Interfaces in Gigascale Electronics: Thermal and Electrical Stability. Springer, 2011.
Find full textLu, Toh-Ming, and Ming He. Metal-Dielectric Interfaces in Gigascale Electronics: Thermal and Electrical Stability. Springer, 2016.
Find full textBook chapters on the topic "Dielectric/metal/dielectric"
Shalaev, Vladimir M. "Random metal-dielectric films." In Springer Tracts in Modern Physics, 101–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/bfb0109604.
Full textHe, Ming, and Toh-Ming Lu. "Barrier Metal–Dielectric Interfaces." In Metal-Dielectric Interfaces in Gigascale Electronics, 75–89. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_6.
Full textHe, Ming, and Toh-Ming Lu. "Al-Dielectric Interfaces." In Metal-Dielectric Interfaces in Gigascale Electronics, 45–55. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_4.
Full textHe, Ming, and Toh-Ming Lu. "Cu-Dielectric Interfaces." In Metal-Dielectric Interfaces in Gigascale Electronics, 57–74. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_5.
Full textHe, Ming, and Toh-Ming Lu. "Metal–Dielectric Diffusion Processes: Fundamentals." In Metal-Dielectric Interfaces in Gigascale Electronics, 11–22. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_2.
Full textCai, W., and V. Shalaev. "Optical Properties of Metal-Dielectric Composites." In Optical Metamaterials, 11–37. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1151-3_2.
Full textHe, Ming, and Toh-Ming Lu. "Introduction." In Metal-Dielectric Interfaces in Gigascale Electronics, 1–9. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_1.
Full textHe, Ming, and Toh-Ming Lu. "Experimental Techniques." In Metal-Dielectric Interfaces in Gigascale Electronics, 23–44. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_3.
Full textHe, Ming, and Toh-Ming Lu. "Self-Forming Barriers." In Metal-Dielectric Interfaces in Gigascale Electronics, 91–108. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_7.
Full textHe, Ming, and Toh-Ming Lu. "Kinetics of Ion Drift." In Metal-Dielectric Interfaces in Gigascale Electronics, 109–25. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1812-2_8.
Full textConference papers on the topic "Dielectric/metal/dielectric"
Fitio, V., A. Bendzyak, I. Yaremchuk, and Y. Bobitski. "Properties of Metal/Dielectric/Metal and Dielectric/Metal/Dielectric Nanowaveguide Structures." In 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). IEEE, 2018. http://dx.doi.org/10.1109/ukrmico43733.2018.9047609.
Full textAntosiewicz, Tomasz J., Piotr Wróbel, and Tomasz Szoplik. "Dielectric-metal-dielectric nanotip for SNOM." In SPIE Europe Optics + Optoelectronics, edited by Vladimir Kuzmiak, Peter Markos, and Tomasz Szoplik. SPIE, 2009. http://dx.doi.org/10.1117/12.827499.
Full textBoiko, Oleksandr. "Dielectric relaxation in granular metal-dielectric nanocomposites." In 2019 15th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE, 2019. http://dx.doi.org/10.1109/wzee48932.2019.8979905.
Full textVeronis, Georgios, Wonseok Shin, and Shanhui Fan. "Compact couplers between dielectric and metal-dielectric-metal plasmonic waveguides." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4453138.
Full textMayboroda, D. V., S. A. Pogarsky, I. I. Saprykin, and V. N. Sukhov. "Hybrid metal-dielectric structure based on inverted dielectric waveguide." In 2014 24th International Crimean Conference "Microwave & Telecommunication Technology" (CriMiCo). IEEE, 2014. http://dx.doi.org/10.1109/crmico.2014.6959496.
Full textGuenther, Karl H., K. Balasubramanian, and X. Q. Hu. "Durable, nonchanging, metal-dielectric and all-dielectric mirror coatings." In Orlando '91, Orlando, FL, edited by Max J. Riedl, Robert R. Hale, and Thomas B. Parsonage. SPIE, 1991. http://dx.doi.org/10.1117/12.46538.
Full textZhang, Kai xin, Jian da Shao, Guo hang Hu, Maria Luisa Grillid, Angela Piegari, Zhen Cao, Hong bo He, Yuan an Zhao, and Anna Sytchkova. "Subwavelength periodic nanostructures fabricated by femtosecond laser in metal, dielectric and metal-dielectric-metal coating." In Tenth International Conference on Thin Film Physics and Applications (TFPA 2019), edited by Junhao Chu and Jianda Shao. SPIE, 2019. http://dx.doi.org/10.1117/12.2540704.
Full textNa, Jin-Young, Han-Kyeol Lee, Yoon-Jong Moon, and Sun-Kyung Kim. "Design principles of ultra high transmittance dielectric/metal/dielectric electrodes." In 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2015. http://dx.doi.org/10.1109/cleopr.2015.7376089.
Full textZhang, Minchang, Trevor Allen, and Ray DeCorby. "Admittance-matched plasmon-mediated tunneling through dielectric-metal-dielectric multilayers." In Optical Interference Coatings. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/oic.2013.ta.8.
Full textZheng, Guoan, Mingwu Gao, and Hongyu Chen. "Slow Propagation of Light in a Dielectric-Metal-Dielectric Waveguide." In 2006 Asian Optical Fiber Communication & Optoelectronic Exposition & Conference. IEEE, 2006. http://dx.doi.org/10.1109/aoe.2006.307330.
Full textReports on the topic "Dielectric/metal/dielectric"
Chettiar, Uday K., Zhengtong Liu, Mark D. Thoreson, Vladimir M. Shalaev, Vladimir P. Drachev, Michael Vern Pack, Alexander V. Kildishev, and Piotr Nyga. Studies on metal-dielectric plasmonic structures. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/973344.
Full textMerry, Jr., Walter Richardson. Image potential states at metal-dielectric interfaces. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10158044.
Full textMerry, W. R. Jr. Image potential states at metal-dielectric interfaces. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/7069868.
Full textLarciprete, Maria C. Development of One-Dimensional Dielectric and Metal-Dielectric Photonic Band Gap for Optical Switching and Limiting Applications. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada457953.
Full textGe, Nien-Hui. Ultrafast studies of electron dynamics at metal-dielectric interfaces. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/8648.
Full textSievers, A. J. Experimental Study of Electronic States at Metal-Dielectric Interfaces. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada166290.
Full textDomning, Edward Ernest. Design and test of a low jitter metal to metal contact solid dielectric switch. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10172324.
Full textCain, William N. The Effects of Dielectric and Metal Loading on the Dispersion Characteristics for Contrawound Helix Circuits Used in High Power Traveling-Wave Tubes. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada205345.
Full text