To see the other types of publications on this topic, follow the link: Dielectric/metal/dielectric.

Journal articles on the topic 'Dielectric/metal/dielectric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dielectric/metal/dielectric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Min Zhong, Min Zhong. "Influence of dielectric layer on negative refractive index and transmission of metal-dielectric-metal sandwiched metamaterials." Chinese Optics Letters 12, no. 4 (2014): 041601–41603. http://dx.doi.org/10.3788/col201412.041601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jinlong Zhang, Jinlong Zhang, Zhanshan Wang Zhanshan Wang, and Xinbin Cheng Xinbin Cheng. "Dispersive mirrors designed with mixed metal multilayer dielectric stacks." Chinese Optics Letters 10, no. 1 (2012): 013101–13103. http://dx.doi.org/10.3788/col201210.013101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoon, Boram, Namkyu Lee, Ji-Yeul Bae, Fakadu Tolessa, and Hyung Hee Cho. "Metal-Dielectric-Metal Selective Emitter with Circular Hole Patterns for Thermo-photovoltaic." Transactions of the Korean Society of Mechanical Engineers - B 42, no. 5 (May 31, 2018): 357–63. http://dx.doi.org/10.3795/ksme-b.2018.42.5.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hassan, Md Farhad, Rakibul Hasan Sagor, Infiter Tathfif, Kazi Sharmeen Rashid, and Mohammed Radoan. "An Optimized Dielectric-Metal-Dielectric Refractive Index Nanosensor." IEEE Sensors Journal 21, no. 2 (January 15, 2021): 1461–69. http://dx.doi.org/10.1109/jsen.2020.3016570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sellai, A., and M. Elzain. "Characteristics of a dielectric–metal–dielectric plasmonic waveguide." Physica E: Low-dimensional Systems and Nanostructures 41, no. 1 (October 2008): 106–9. http://dx.doi.org/10.1016/j.physe.2008.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gomeniuk, Y. V. "Current transport mechanisms in metal – high-k dielectric – silicon structures." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 2 (May 30, 2012): 139–46. http://dx.doi.org/10.15407/spqeo15.02.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Fan, Shaojie Ma, Kun Ding, Shuang Zhang, and J. B. Pendry. "Continuous topological transition from metal to dielectric." Proceedings of the National Academy of Sciences 117, no. 29 (July 7, 2020): 16739–42. http://dx.doi.org/10.1073/pnas.2003171117.

Full text
Abstract:
Metal and dielectric have long been thought as two different states of matter possessing highly contrasting electric and optical properties. A metal is a material highly reflective to electromagnetic waves for frequencies up to the optical region. In contrast, a dielectric is transparent to electromagnetic waves. These two different classical electrodynamic properties are distinguished by different signs of the real part of permittivity: The metal has a negative sign while the dielectric has a positive one. Here, we propose a different topological understanding of metal and dielectric. By considering metal and dielectric as just two limiting cases of a periodic metal–dielectric layered metamaterial, from which a metal can continuously transform into a dielectric by varying the metal filling ratio from 1 to 0, we further demonstrate the abrupt change of a topological invariant at a certain point during this transition, classifying the metamaterials into metallic state and dielectric state. The topological phase transition from the metallic state to the dielectric state occurs when the filling ratio is one-half. These two states generalize our previous understanding of metal and dielectric: The metamaterial with metal filling ratio larger/smaller than one-half is named as the “generalized metal/dielectric.” Interestingly, the surface plasmon polariton (SPP) at a metal/dielectric interface can be understood as the limiting case of a topological edge state.
APA, Harvard, Vancouver, ISO, and other styles
8

Lopéz, I. Pérez, L. Cattin, D. T. Nguyen, M. Morsli, and J. C. Bernède. "Dielectric/metal/dielectric structures using copper as metal and MoO3 as dielectric for use as transparent electrode." Thin Solid Films 520, no. 20 (August 2012): 6419–23. http://dx.doi.org/10.1016/j.tsf.2012.06.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fan, Yu-Wei, Hui-Huang Zhong, Zhi-Qiang Li, Han-Wu Yang, Ting Shu, Heng Zhou, Cheng-Wei Yuan, Jun Zhang, and Ling Luo. "A metal-dielectric cathode." Journal of Applied Physics 104, no. 2 (July 15, 2008): 023304. http://dx.doi.org/10.1063/1.2957054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frenkel, A. "Thick metal-dielectric window." Electronics Letters 37, no. 23 (2001): 1374. http://dx.doi.org/10.1049/el:20010958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Frisbie, S. P., A. Krishnan, Xiaoyan Xu, L. G. de Peralta, S. A. Nikishin, M. W. Holtz, and A. A. Bernussi. "Optical Reflectivity of Asymmetric Dielectric–Metal–Dielectric Planar Structures." Journal of Lightwave Technology 27, no. 15 (August 2009): 2964–69. http://dx.doi.org/10.1109/jlt.2008.2009886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Das, B. N., and S. B. Chakrabarty. "Capacitance of Spherical Dielectric and Dielectric Coated Metal Sphere." IETE Journal of Education 34, no. 3-4 (July 1993): 173–76. http://dx.doi.org/10.1080/09747338.1993.11436430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Allers, K. H., J. Böck, S. Boguth, K. Goller, H. Knapp, and R. Lachner. "Dielectric thinning model applied to metal insulator metal capacitors with Al2O3 dielectric." Microelectronics Reliability 49, no. 12 (December 2009): 1520–28. http://dx.doi.org/10.1016/j.microrel.2009.07.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kostrobij, P., and V. Polovyi. "Surface plasmon polaritons in dielectric/metal/dielectric structures: metal layer thickness influence." Mathematical Modeling and Computing 6, no. 1 (June 12, 2019): 109–15. http://dx.doi.org/10.23939/mmc2019.01.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yuzevych, V. M. "Thermodynamic and adhesive parameters of nanolayers in the system "metal-dielectric"." Functional materials 25, no. 2 (June 27, 2018): 319–28. http://dx.doi.org/10.15407/fm25.02.319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zong Yixin, 宗易昕, 夏建白 Xia Jianbai, and 武海斌 Wu Haibin. "Photonic Band Structure and State Density of Dielectric/Dielectric and Metal/Dielectric Photonic Crystals." Laser & Optoelectronics Progress 53, no. 3 (2016): 031602. http://dx.doi.org/10.3788/lop53.031602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Annenkov, A. Yu, S. V. Gerus, and E. H. Lock. "Characteristics of Surface Spin Waves in a Metal–Dielectric–Ferrite–Dielectric–Metal Structure." Bulletin of the Russian Academy of Sciences: Physics 82, no. 8 (August 2018): 935–38. http://dx.doi.org/10.3103/s1062873818080063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Hyunsoo, Kyu-Tae Lee, Chumin Zhao, L. Jay Guo, and Jerzy Kanicki. "Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode." Organic Electronics 20 (May 2015): 103–11. http://dx.doi.org/10.1016/j.orgel.2015.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kumar, Ashwani, S. F. Yu, and X. F. Li. "Random laser action in dielectric-metal-dielectric surface plasmon waveguides." Applied Physics Letters 95, no. 23 (December 7, 2009): 231114. http://dx.doi.org/10.1063/1.3274042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Medvedev, V. V., V. M. Gubarev, and C. J. Lee. "Optical performance of a dielectric-metal-dielectric antireflective absorber structure." Journal of the Optical Society of America A 35, no. 8 (July 25, 2018): 1450. http://dx.doi.org/10.1364/josaa.35.001450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xie, Xixi, Cuncun Wu, Shuren Sun, Xiaolong Xu, Wanjin Xu, Guogang Qin, and Lixin Xiao. "Semitransparent Perovskite Solar Cells with Dielectric/Metal/Dielectric Top Electrodes." Energy Technology 8, no. 4 (April 2020): 1900868. http://dx.doi.org/10.1002/ente.201900868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cattin, L., El Jouad, N. Stephant, G. Louarn, M. Morsli, M. Hssein, Y. Mouchaal, et al. "Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation." Journal of Physics D: Applied Physics 50, no. 37 (August 24, 2017): 375502. http://dx.doi.org/10.1088/1361-6463/aa7dfd.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Shuxia, Shuai Liu, Xuefeng Yang, Changtao Wang, and Xiangang Luo. "Near-field Moiré effect with dielectric–metal–dielectric sandwich structure." Journal of Nanophotonics 7, no. 1 (October 17, 2013): 073080. http://dx.doi.org/10.1117/1.jnp.7.073080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, Sungjun, and Jong-Lam Lee. "Design of dielectric/metal/dielectric transparent electrodes for flexible electronics." Journal of Photonics for Energy 2, no. 1 (October 10, 2012): 021215. http://dx.doi.org/10.1117/1.jpe.2.021215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Butt, M. A., S. A. Fomchenkov, and S. N. Khonina. "Dielectric-Metal-Dielectric (D-M-D) infrared (IR) heat reflectors." Journal of Physics: Conference Series 917 (November 2017): 062007. http://dx.doi.org/10.1088/1742-6596/917/6/062007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Antosiewicz, Tomasz J., Piotr Wróbel, and Tomasz Szoplik. "Nanofocusing of radially polarized light with dielectric-metal-dielectric probe." Optics Express 17, no. 11 (May 15, 2009): 9191. http://dx.doi.org/10.1364/oe.17.009191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rozhkov, V. A., and A. Yu Trusova. "Silicon metal-dielectric-semiconductor varicaps with an yttrium oxide dielectric." Technical Physics Letters 23, no. 6 (June 1997): 475–77. http://dx.doi.org/10.1134/1.1261672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sital, Shivani. "Surface Plasmon Modes of Dielectric-Metal-Dielectric Waveguides and Applications." IOSR Journal of Electronics and Communication Engineering 12, no. 2 (March 2017): 08–19. http://dx.doi.org/10.9790/2834-1202010819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fonseca, L. R. C., PY Prodhomme, and P. Blaise. "Bridging Electrical and Structural Interface Properties: a Combined DFT-GW Approach." Journal of Integrated Circuits and Systems 2, no. 2 (November 18, 2007): 94–103. http://dx.doi.org/10.29292/jics.v2i2.273.

Full text
Abstract:
The selection of a proper metal for replacement of polycrystalline silicon as the metal gate in future generation transistors has been hampered by pinning of the metal Fermi level at the metal/dielectric interface. Using monoclinic hafnia and zirconia as the gate dielectric we compare three different metal gate/gate dielectric interface structures where the oxygen affinity of the metal gate varies from low to high under normal processing conditions. For each of the metal gate/gate dielectric combination we considered a number of interface stoichiometries and tried to identify the most likely interface composition by comparing the calculated and measured valence band offsets (VBO). Because density functional theory (DFT) underestimates the dielectric band gap, it also underestimates the VBO thus requiring a correction to the band edges, which we accomplished using GW for cubic and monoclinic hafnia. Our GW shift value for monoclinic hafnia (0.3 eV) indicates mostly reduced interfaces in all metal/dielectric combinations considered.
APA, Harvard, Vancouver, ISO, and other styles
30

Poperenko, L. V., A. L. Yampolskiy, O. V. Makarenko, and O. I. Zavalistyi. "Optimization of Optical Parameters of Metal-Dielectric Heterostructures for Plasmonic Sensors Formation." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 41, no. 6 (September 13, 2019): 751–64. http://dx.doi.org/10.15407/mfint.41.06.0751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Selina, N. V. "Metal–Dielectric Core–Shell Nanoparticles." Nanotechnologies in Russia 14, no. 9-10 (September 2019): 451–55. http://dx.doi.org/10.1134/s1995078019050124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sasin, M. E., N. D. Il’inskaya, Yu M. Zadiranov, N. A. Kaliteevskaya, A. A. Lazarenko, V. A. Mazlin, P. N. Brunkov, S. I. Pavlov, and M. A. Kaliteevski. "Cylindrical multilayer metal–dielectric structures." Technical Physics Letters 41, no. 11 (November 2015): 1097–98. http://dx.doi.org/10.1134/s1063785015110255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shvets, V. T., and A. S. Vlasenko. "Metal-Dielectric Transition in Hydrogen." Acta Physica Polonica A 114, no. 4 (October 2008): 851–58. http://dx.doi.org/10.12693/aphyspola.114.851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kharlamov, V. F., D. A. Korostelev, I. G. Bogoraz, O. I. Markov, and Yu V. Khripunov. "Electric conductivity of metal-dielectric-metal structures with dielectric layer formed by spherical metal oxide nanoparticles." Technical Physics Letters 37, no. 6 (June 2011): 511–14. http://dx.doi.org/10.1134/s106378501106006x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yu, Shan-Shan, Guo-Jun Yuan, and Hai-Bao Duan. "The low dielectric constant and relaxation dielectric behavior in hydrogen-bonding metal–organic frameworks." RSC Advances 5, no. 56 (2015): 45213–16. http://dx.doi.org/10.1039/c5ra08074f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sadovnikov, A. V., K. V. Bublikov, E. N. Beginin, and S. A. Nikitov. "The electrodynamic characteristics of a finite-width metal/dielectric/ferroelectric/dielectric/metal layer structure." Journal of Communications Technology and Electronics 59, no. 9 (August 31, 2014): 914–19. http://dx.doi.org/10.1134/s106422691408018x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Baek, Jong Tae, Sung Hoon Chung, Sang Won Kang, Byung Tae Ahn, and Hyung Joun Yoo. "A New Low-Resistance Antifuse with Planar Metal/Dielectric/Poly-Si/Dielectric/Metal Structure." Japanese Journal of Applied Physics 36, Part 1, No. 3B (March 30, 1997): 1642–45. http://dx.doi.org/10.1143/jjap.36.1642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cattin, L., A. El Mahlali, M. A. Cherif, S. Touihri, Z. El Jouad, Y. Mouchaal, P. Blanchard, et al. "New dielectric/metal/dielectric electrode for organic photovoltaic cells using Cu:Al alloy as metal." Journal of Alloys and Compounds 819 (April 2020): 152974. http://dx.doi.org/10.1016/j.jallcom.2019.152974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Troyan, Pavel E., Vladimir I. Zelensky, and Vitaly V. Karansky. "Impulse characteristics nanostructures of metal-dielectric-metal." Proceedings of Tomsk State University of Control Systems and Radioelectronics 21, no. 4 (2018): 17–20. http://dx.doi.org/10.21293/1818-0442-2018-21-4-17-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Joshi, Bhuwan P., and Qi-Huo Wei. "Cavity resonances of metal-dielectric-metal nanoantennas." Optics Express 16, no. 14 (June 26, 2008): 10315. http://dx.doi.org/10.1364/oe.16.010315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Biao Chen, Biao Chen, Xiahui Zeng Xiahui Zeng, Xiyao Chen Xiyao Chen, Yuanyuan Lin Yuanyuan Lin, Yishen Qiu Yishen Qiu, and Hui Li Hui Li. "Tunable dual-band infrared polarization filter based on a metal-dielectric-metal compound rectangular strip array." Chinese Optics Letters 13, no. 3 (2015): 031301–31305. http://dx.doi.org/10.3788/col201513.031301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Krutskikh, V. V., A. Yu Sizyakova, M. S. Minkara, A. R. Ibrahim, A. E. Mirzoyan, and A. N. Ushkov. "Broadband Metal-Dielectric Waveguide Path with Low Losses in the EHF Range." Rocket-space device engineering and information systems 8, no. 3 (2021): 89–98. http://dx.doi.org/10.30894/issn2409-0239.2021.8.3.89.98.

Full text
Abstract:
. The present paper is devoted to the design of a new shielded metal-dielectric waveguide with low losses (less than 0.5 dB/m) and wide bandwidth for the 90–100 GHz frequency range. Various types of waveguide structures were analyzed, such as metal waveguides, oversized metal waveguides, dielectric waveguides, dielectric waveguides with a metal shield and various designs of the dielectric filling element. Estimates of loss per unit length in them are obtained. The design of a waveguide containing an oversized round metal screen and a dielectric element consisting of a plate and a rod, located in the center of symmetry of the device, is proposed. The task of creating a transition from the investigated waveguide to a standard rectangular metal waveguide is considered. It is a horn transition from a circular cross-section to a rectangular one with a length of more than 25 wavelengths with a dielectric structure continuing the dielectric element of the waveguide path. As a result of the work, the ratios of the dimensions of the structural elements of the waveguide path and the materials used were obtained that satisfy the required losses.
APA, Harvard, Vancouver, ISO, and other styles
43

Polovyi, Vitalii, and Kostrobiy Petro. "The influence of the electroneutrality of the metal layer on the plasmon spectrum in "dielectric-metal-dielectric" structures." Modeling, Control and Information Technologies, no. 3 (November 5, 2019): 141–44. http://dx.doi.org/10.31713/mcit.2019.19.

Full text
Abstract:
This paper proposes a model that takes into account the discretization of the Fermi wave vector and energy levels, as well as the condition of electroneutrality when investigating the influence of metal thickness on the spectrum of SPPs waves in heterogeneous dielectric-metal-dielectric structures.
APA, Harvard, Vancouver, ISO, and other styles
44

Peng Yang, 彭杨, 侯静 Hou Jing, and 陆启生 Lu Qisheng. "Dispersion of Surface Plasmon Modes in Coaxial Dielectric-Metal-Dielectric Structure." Acta Optica Sinica 31, no. 10 (2011): 1024001. http://dx.doi.org/10.3788/aos201131.1024001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kim, Sungjun, Hak Ki Yu, Kihyon Hong, Kisoo Kim, Jun Ho Son, Illhwan Lee, Kyoung-Bo Kim, Tae-Yeob Kim, and Jong-Lam Lee. "MgO nano-facet embedded silver-based dielectric/metal/dielectric transparent electrode." Optics Express 20, no. 2 (January 3, 2012): 845. http://dx.doi.org/10.1364/oe.20.000845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yang, Ye, Weijie Song, and Liming Ding. "Dielectric/ultrathin metal/dielectric structured transparent conducting films for flexible electronics." Science Bulletin 65, no. 16 (August 2020): 1324–26. http://dx.doi.org/10.1016/j.scib.2020.04.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Majumdar, Kausik, Chris Hobbs, Ken Matthews, Chien-Hao Chen, Tat Ngai, Chang Yong Kang, Gennadi Bersuker, et al. "Contact resistance improvement by dielectric breakdown in semiconductor-dielectric-metal contact." Applied Physics Letters 102, no. 11 (March 18, 2013): 113505. http://dx.doi.org/10.1063/1.4796138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Zhengling, Shiqiang Li, R. P. H. Chang, and John B. Ketterson. "Perfect coupling of light to a periodic dielectric/metal/dielectric structure." Journal of Applied Physics 116, no. 3 (July 21, 2014): 033103. http://dx.doi.org/10.1063/1.4890511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kostrobij, P., V. Pavlysh, D. Nevinskyi, and V. Polovyi. "SPP waves in "dielectric-metal-dielectric" structures: influence of exchange correlations." Mathematical Modeling and Computing 4, no. 2 (December 31, 2017): 148–55. http://dx.doi.org/10.23939/mmc2017.02.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sun Yao, 孙瑶, and 汪洪 Wang Hong. "Spectral Ellipsometry of Dielectric/Metal/Dielectric Transparent Conductive Multi-Layer Films." Laser & Optoelectronics Progress 53, no. 10 (2016): 103101. http://dx.doi.org/10.3788/lop53.103101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography