Journal articles on the topic 'Dielectric properties of human tissues'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dielectric properties of human tissues.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yilmaz, Tuba, and Fatma Ates Alkan. "In Vivo Dielectric Properties of Healthy and Benign Rat Mammary Tissues from 500 MHz to 18 GHz." Sensors 20, no. 8 (April 14, 2020): 2214. http://dx.doi.org/10.3390/s20082214.
Full textSurowiec, A., S. S. Stuchly, L. Eidus, and A. Swarup. "In vitro dielectric properties of human tissues at radiofrequencies." Physics in Medicine and Biology 32, no. 5 (May 1, 1987): 615–21. http://dx.doi.org/10.1088/0031-9155/32/5/007.
Full textWerber, D., A. Schwentner, and E. M. Biebl. "Investigation of RF transmission properties of human tissues." Advances in Radio Science 4 (September 6, 2006): 357–60. http://dx.doi.org/10.5194/ars-4-357-2006.
Full textHahn, Camerin, and Sima Noghanian. "Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models." International Journal of Biomedical Imaging 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/803607.
Full textLu, Yongjun, Hongming Cui, Jue Yu, and Satoru Mashimo. "Dielectric properties of human fetal organ tissues at radio frequencies." Bioelectromagnetics 17, no. 5 (1996): 425–26. http://dx.doi.org/10.1002/(sici)1521-186x(1996)17:5<425::aid-bem10>3.0.co;2-l.
Full textMartinsen, Ø. G., S. Grimnes, and E. S. Kongshaug. "Dielectric properties of some keratinised tissues. Part 2: Human hair." Medical & Biological Engineering & Computing 35, no. 3 (May 1997): 177–80. http://dx.doi.org/10.1007/bf02530034.
Full textManiakova, Eva, and Dagmar Faktorova. "MEASURING THE DIELECTRIC PROPERTIES OF TUMOR AND BREAST PHANTOMS USED IN THE MICROWAVE FREQUENCY RANGE." CBU International Conference Proceedings 4 (September 16, 2016): 647–51. http://dx.doi.org/10.12955/cbup.v4.826.
Full textMotrescu, V. C., and U. van Rienen. "Computation of currents induced by ELF electric fields in anisotropic human tissues using the Finite Integration Technique (FIT)." Advances in Radio Science 3 (May 12, 2005): 227–31. http://dx.doi.org/10.5194/ars-3-227-2005.
Full textYan, L. P., K. M. Huang, and C. J. Liu. "A Noninvasive Method for Determining Dielectric Properties of Layered Tissues on Human Back." Journal of Electromagnetic Waves and Applications 21, no. 13 (January 1, 2007): 1829–43. http://dx.doi.org/10.1163/156939307781890978.
Full textGarrett, John, and Elise Fear. "Stable and Flexible Materials to Mimic the Dielectric Properties of Human Soft Tissues." IEEE Antennas and Wireless Propagation Letters 13 (2014): 599–602. http://dx.doi.org/10.1109/lawp.2014.2312925.
Full textMunawar, Awais, Zartasha Mustansar, Ahmed E. Nadeem, and Mahmood Akhtar. "AN INVESTIGATION INTO ELECTROMAGNETIC BASED IMPEDANCE TOMOGRAPHY USING REALISTIC HUMAN HEAD MODEL." International Journal of Pharmacy and Pharmaceutical Sciences 8, no. 2 (September 17, 2016): 35. http://dx.doi.org/10.22159/ijpps.2016v8s2.15217.
Full textLu, Y., B. Li, J. Xu, and J. Yu. "Dielectric properties of human glioma and surrounding tissue." International Journal of Hyperthermia 8, no. 6 (January 1992): 755–60. http://dx.doi.org/10.3109/02656739209005023.
Full textMumin, Abdul Rashid O., R. Alias, Jiwa Abdullah, Raed A. Abdulhasan, Samsul Haimi Dahlan, and Ariffuddin Joret. "Performance Characteristics of Head-Worn Antenna based on Dielectric Substrate Over WBAN Application." International Journal of Engineering & Technology 7, no. 4.30 (November 30, 2018): 403. http://dx.doi.org/10.14419/ijet.v7i4.30.22345.
Full textNeira, Luz Maria, R. Owen Mays, James F. Sawicki, Amanda Schulman, Josephine Harter, Lee G. Wilke, Nader Behdad, Barry D. Van Veen, and Susan C. Hagness. "A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue." Sensors 20, no. 19 (October 6, 2020): 5698. http://dx.doi.org/10.3390/s20195698.
Full textSinha, Debottam, K. Anwar, K. Kumari, S. Jaishwal, S. Madeshwaran, S. Keshari, D. Rajan Babu, R. Vidya, and Narayanasamy Arunai Nambi Raj. "Studies on the Dielectric Properties of Natural Urinary Stones." Advanced Materials Research 584 (October 2012): 484–88. http://dx.doi.org/10.4028/www.scientific.net/amr.584.484.
Full textZhekov, Stanislav Stefanov, Ondrej Franek, and Gert Frolund Pedersen. "Dielectric Properties of Human Hand Tissue for Handheld Devices Testing." IEEE Access 7 (2019): 61949–59. http://dx.doi.org/10.1109/access.2019.2914863.
Full textMunawar Qureshi, Awais, Zartasha Mustansar, and Samah Mustafa. "Finite-element analysis of microwave scattering from a three-dimensional human head model for brain stroke detection." Royal Society Open Science 5, no. 7 (July 2018): 180319. http://dx.doi.org/10.1098/rsos.180319.
Full textKoyama, Kazunori, Akimasa Hirata, Jianquing Wang, and Osamu Fujiwara. "In-Vivo Time Domain Measurement of Dielectric Properties of Human Body Tissue." IEEJ Transactions on Fundamentals and Materials 130, no. 12 (2010): 1087–91. http://dx.doi.org/10.1541/ieejfms.130.1087.
Full textKalra, Anubha, Andrew Lowe, and Gautam Anand. "Bio Phantoms Mimicking the Dielectric and Mechanical Properties of Human Skin Tissue at Low-Frequency Ranges." Modern Applied Science 14, no. 7 (May 22, 2020): 1. http://dx.doi.org/10.5539/mas.v14n7p1.
Full textGavazzi, Soraya, Paolo Limone, Giovanni De Rosa, Filippo Molinari, and Giuseppe Vecchi. "Comparison of microwave dielectric properties of human normal, benign and malignant thyroid tissues obtained from surgeries: a preliminary study." Biomedical Physics & Engineering Express 4, no. 4 (May 14, 2018): 047003. http://dx.doi.org/10.1088/2057-1976/aa9f77.
Full textCampbell, A. M., and D. V. Land. "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz." Physics in Medicine and Biology 37, no. 1 (January 1, 1992): 193–210. http://dx.doi.org/10.1088/0031-9155/37/1/014.
Full textChen, Yifan, Panagiotis Kosmas, and Sylvain Martel. "A Feasibility Study for Microwave Breast Cancer Detection Using Contrast-Agent-Loaded Bacterial Microbots." International Journal of Antennas and Propagation 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/309703.
Full textGomez-Tames, Jose, Yuto Fukuhara, Siyu He, Kazuyuki Saito, Koichi Ito, and Wenwei Yu. "A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues." Computers in Biology and Medicine 61 (June 2015): 144–49. http://dx.doi.org/10.1016/j.compbiomed.2015.03.029.
Full textIrastorza, Ramiro M., Sergio Valente, Fernando Vericat, and Eugenia Blangino. "Dielectric Properties in Fresh Trabecular Bone Tissue from 1MHz to 1000MHz: A Fast and Non Destructive Quality Evaluation Technique." Materials Science Forum 638-642 (January 2010): 730–35. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.730.
Full textDi Meo, Simona, Giulia Matrone, and Marco Pasian. "Experimental Validation on Tissue-Mimicking Phantoms of Millimeter-Wave Imaging for Breast Cancer Detection." Applied Sciences 11, no. 1 (January 4, 2021): 432. http://dx.doi.org/10.3390/app11010432.
Full textFarsaci, Francesco, Annamaria Russo, Silvana Ficarra, and Ester Tellone. "Dielectric Properties of Human Normal and Malignant Liver Tissue: A Non-Equilibrium Thermodynamics Approach." OALib 02, no. 03 (2015): 1–12. http://dx.doi.org/10.4236/oalib.1101395.
Full textNopp, P., N. D. Harris, T. X. Zhao, and B. H. Brown. "Model for the dielectric properties of human lung tissue against frequency and air content." Medical & Biological Engineering & Computing 35, no. 6 (November 1997): 695–702. http://dx.doi.org/10.1007/bf02510980.
Full textSilaghi, A. M., U. L. Rohde, A. K. Poddar, H. Silaghi, T. I. Ilias, and O. C. Fratila. "Important Aspects of Human Blood Exposure in the Radio and Microwave Field." Scientific Bulletin of Electrical Engineering Faculty 19, no. 1 (April 1, 2019): 23–27. http://dx.doi.org/10.1515/sbeef-2019-0005.
Full textIzdihar, Kamal, Hairil Rashmizal Abdul Razak, Nurzulaikha Supion, Muhammad Khalis Abdul Karim, Nurul Huda Osman, and Mazlan Norkhairunnisa. "Structural, Mechanical, and Dielectric Properties of Polydimethylsiloxane and Silicone Elastomer for the Fabrication of Clinical-Grade Kidney Phantom." Applied Sciences 11, no. 3 (January 27, 2021): 1172. http://dx.doi.org/10.3390/app11031172.
Full textKissi, Chaïmaâ, Mariella Särestöniemi, Timo Kumpuniemi, Marko Sonkki, Sami Myllymäki, Mohamed Nabil Srifi, and Carlos Pomalaza-Raez. "On-body Cavity-Backed Low-UWB Antenna for Capsule Localization." International Journal of Wireless Information Networks 27, no. 1 (September 30, 2019): 30–44. http://dx.doi.org/10.1007/s10776-019-00460-9.
Full textWilliams, Paul Allen, and Subrata Saha. "The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content." Annals of Biomedical Engineering 24, no. 2 (March 1996): 222–33. http://dx.doi.org/10.1007/bf02667351.
Full textJemima Priyadarshini, S., and D. Jude Hemanth. "Investigation of Nanomaterial Dipoles for SAR Reduction in Human Head." Frequenz 73, no. 5-6 (May 27, 2019): 189–201. http://dx.doi.org/10.1515/freq-2018-0220.
Full textAnand, Gautam, Andrew Lowe, and Ahmed Al-Jumaily. "Tissue phantoms to mimic the dielectric properties of human forearm section for multi-frequency bioimpedance analysis at low frequencies." Materials Science and Engineering: C 96 (March 2019): 496–508. http://dx.doi.org/10.1016/j.msec.2018.11.080.
Full textSchmid, Gernot, Georg Neubauer, and Peter R. Mazal. "Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz." Bioelectromagnetics 24, no. 6 (August 11, 2003): 423–30. http://dx.doi.org/10.1002/bem.10123.
Full textScapaticci, Rosa, Vanni Lopresto, Rosanna Pinto, Marta Cavagnaro, and Lorenzo Crocco. "Monitoring Thermal Ablation via Microwave Tomography: An Ex Vivo Experimental Assessment." Diagnostics 8, no. 4 (December 6, 2018): 81. http://dx.doi.org/10.3390/diagnostics8040081.
Full textSavazzi, Matteo, Soroush Abedi, Niko Ištuk, Nadine Joachimowicz, Hélène Roussel, Emily Porter, Martin O’Halloran, et al. "Development of an Anthropomorphic Phantom of the Axillary Region for Microwave Imaging Assessment." Sensors 20, no. 17 (September 2, 2020): 4968. http://dx.doi.org/10.3390/s20174968.
Full textMahmud, Md, Mohammad Islam, Norbahiah Misran, Ali Almutairi, and Mengu Cho. "Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review." Sensors 18, no. 9 (September 5, 2018): 2951. http://dx.doi.org/10.3390/s18092951.
Full textGamal, W., H. Wu, I. Underwood, J. Jia, S. Smith, and P. O. Bagnaninchi. "Impedance-based cellular assays for regenerative medicine." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1750 (May 21, 2018): 20170226. http://dx.doi.org/10.1098/rstb.2017.0226.
Full textWang, Hang, Lei Wang, Lin Yang, Xuetao Shi, Zhihong Wen, and Xiuzhen Dong. "Exploring the relationship between the dielectric properties and viability of human normal hepatic tissues from 10 Hz to 100 MHz based on grey relational analysis and BP neural network." Computers in Biology and Medicine 134 (July 2021): 104494. http://dx.doi.org/10.1016/j.compbiomed.2021.104494.
Full textZidane, Mohamed Amine, Hichem Amar, and Amar Rouane. "Study of Two Constraints Impacting Measurements of Human Glycemia Using a Microwave Sensor." Biosensors 11, no. 3 (March 15, 2021): 83. http://dx.doi.org/10.3390/bios11030083.
Full textKiourti, Asimina, and Konstantina S. Nikita. "Design of Implantable Antennas for Medical Telemetry." International Journal of Monitoring and Surveillance Technologies Research 1, no. 1 (January 2013): 16–33. http://dx.doi.org/10.4018/ijmstr.2013010102.
Full textKumar, S. Ashok, and T. Shanmuganantham. "Implantable CPW Fed Circular Slot Antennas at 2.45 GHz ISM Band for Biomedical Applications." Journal of Circuits, Systems and Computers 24, no. 01 (November 10, 2014): 1550014. http://dx.doi.org/10.1142/s0218126615500140.
Full textSchmid, Gernot, Richard Überbacher, Theodoros Samaras, Manfred Tschabitscher, and Peter R. Mazal. "The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400–1850 MHz." Physics in Medicine and Biology 52, no. 17 (August 21, 2007): 5457–68. http://dx.doi.org/10.1088/0031-9155/52/17/024.
Full textLi, Shu, Zengwen Su, Hao Wang, Quan Wang, and Haiping Ren. "Research on an Anthropomorphic Phantom for Evaluation of the Medical Device Electromagnetic Field Exposure SAR." Applied Sciences 8, no. 10 (October 15, 2018): 1929. http://dx.doi.org/10.3390/app8101929.
Full textTatara, T., and K. Tsuzaki. "Derivation of extracellular fluid volume fraction and equivalent dielectric constant of the cell membrane from dielectric properties of the human body. Part 1: Incorporation of fat tissue into cell suspension model in the arm." Medical & Biological Engineering & Computing 38, no. 4 (July 2000): 377–83. http://dx.doi.org/10.1007/bf02345005.
Full textTatara, T., and K. Tsuzaki. "Derivation of extracellular fluid volume fraction and equivalent dielectric constant of the cell membrane from dielectric properties of the human body. Part 2: A preliminary study for tracking the progression of surgical tissue injury." Medical & Biological Engineering & Computing 38, no. 4 (July 2000): 384–89. http://dx.doi.org/10.1007/bf02345006.
Full textPethig, R. "Dielectric properties of body tissues." Clinical Physics and Physiological Measurement 8, no. 4A (November 1987): 5–12. http://dx.doi.org/10.1088/0143-0815/8/4a/002.
Full textXia, Yun, Qi Zhang, Xue E. Wu, Tim V. Kirk, and Xiao Dong Chen. "Practical and Durable Flexible Strain Sensors Based on Conductive Carbon Black and Silicone Blends for Large Scale Motion Monitoring Applications." Sensors 19, no. 20 (October 19, 2019): 4553. http://dx.doi.org/10.3390/s19204553.
Full textPapezova, Maria, and Dagmar Faktorova. "MICROWAVE PROPAGATION IN TOOTH AND DENTAL DEFECT." CBU International Conference Proceedings 4 (September 16, 2016): 658–61. http://dx.doi.org/10.12955/cbup.v4.828.
Full textSmith, S. R., and K. R. Foster. "Dielectric properties of low-water-content tissues." Physics in Medicine and Biology 30, no. 9 (September 1, 1985): 965–73. http://dx.doi.org/10.1088/0031-9155/30/9/008.
Full text