Academic literature on the topic 'Dielectric waveguide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dielectric waveguide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dielectric waveguide"
Krutskikh, V. V., A. Yu Sizyakova, M. S. Minkara, A. R. Ibrahim, A. E. Mirzoyan, and A. N. Ushkov. "Broadband Metal-Dielectric Waveguide Path with Low Losses in the EHF Range." Rocket-space device engineering and information systems 8, no. 3 (2021): 89–98. http://dx.doi.org/10.30894/issn2409-0239.2021.8.3.89.98.
Full textOmar, M., R. Ramzan, and O. F. Saddiqui. "Energy Tunneling Behavior in Geometrically Separated Wave Guides." Advanced Electromagnetics 6, no. 3 (October 21, 2017): 84. http://dx.doi.org/10.7716/aem.v6i3.422.
Full textHuong, Nguyen Thanh, Nguyen Van Chinh, and Chu Manh Hoang. "Wedge Surface Plasmon Polariton Waveguides Based on Wet-Bulk Micromachining." Photonics 6, no. 1 (February 27, 2019): 21. http://dx.doi.org/10.3390/photonics6010021.
Full textWahsheh, Rami A. "Theoretical Investigation of an Air-Slot Mode-Size Matcher between Dielectric and MDM Plasmonic Waveguides." International Journal of Optics 2021 (December 14, 2021): 1–8. http://dx.doi.org/10.1155/2021/1025374.
Full textMortazy, Ebrahim, Alireza Hassani, Francois Legare, Ke Wu, and Mohamed Chaker. "Multilayer porous waveguide for microwave low-loss applications." International Journal of Microwave and Wireless Technologies 3, no. 4 (May 18, 2011): 459–63. http://dx.doi.org/10.1017/s1759078711000596.
Full textDe Boeij, Wim P., Hans S. Kanger, Gerald W. Lucassen, Cees Otto, and Jan Greve. "Waveguide CARS Spectroscopy: A New Method for Background Suppression, Using Dielectric Layers as a Model." Applied Spectroscopy 47, no. 6 (June 1993): 723–30. http://dx.doi.org/10.1366/0003702934066938.
Full textPochernyaev, V. N., and N. M. Syvkova. "EXTERNAL PARAMETERS OF THE CONNECTION OF A RECTANGULAR WAVEGUIDE PARTIALLY FILLED OF LINEAR DIELECTRIC WITH A RECTANGULAR WAVEGUIDE PARTIALLY FILLED OF NONLINEAR DIELECTRIC." Visnyk Universytetu “Ukraina”, no. 1 (28) 2020 (2020): 100–105. http://dx.doi.org/10.36994/2707-4110-2020-1-28-09.
Full textJiang, Shimin, Weiwei Li, Zhigang He, and Qika Jia. "High-Gradient Cherenkov Radiation Based on a New Dielectric-Loaded Waveguide." Particles 1, no. 1 (November 25, 2018): 279–84. http://dx.doi.org/10.3390/particles1010022.
Full textMorozov, V. M., V. I. Magro, and E. Yu Trakhtman. "Infinite linear waveguide antenna array with metal-dielectric structures in the "floquet channel"." Journal of Physics and Electronics 28, no. 1 (September 10, 2020): 91–96. http://dx.doi.org/10.15421/332015.
Full textMayboroda, D. V., and S. O. Pogarsky. "AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE." Radio physics and radio astronomy 26, no. 3 (September 14, 2021): 270–77. http://dx.doi.org/10.15407/rpra26.03.270.
Full textDissertations / Theses on the topic "Dielectric waveguide"
Barkley, Edward R. (Edward Robert). "The integration of InP /InGaAsP ridge waveguide structures with dielectric waveguides on silicon." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38682.
Full textIncludes bibliographical references (p. 261-271).
Chip-to-chip optical interconnect technology, which is being explored as a potential replacement for copper chip-to-chip interconnects at data transmission rates exceeding 10 Gb/s, is one of several technologies that could be enabled by the monolithic integration of III-V optoelectronic devices on a silicon integrated circuit. Two significant capabilities required to achieve this monolithic integration were addressed: the assembly of III-V device structures on silicon and the fabrication of the waveguides that perform the intra-chip routing of the optical signal to and from these integrated device structures. These waveguides, consisting of a silicon oxynitride core (n = 1.6) and a silicon dioxide cladding (n = 1.45) were deposited via plasma-enhanced chemical vapor deposition (PECVD). The integrated InP/InGaAsP structures were fabricated using an existing novel technique for preparing very thin (on the order of 5 pm thick) substrate free rectangular structures (approximately 145 pm wide by 300 pm long) with cleaved facets. Using a pick-and-place method, the InP/InGaAsP structures were assembled in 6 pm deep rectangular wells formed by etching through the waveguide stack. The resulting configuration of the integrated devices in the wells facilitated end-fire coupling with the silicon oxynitride waveguides.
(cont.) Transmission spectrum measurements for this configuration verified the desired end-fire optical coupling through the integrated InP/InGaAsP device structures with a total coupling loss of 17.75 dB. This loss was shown through measurements and finite difference time domain (FDTD) simulations to be a function of integrated device misalignment, silicon oxynitride waveguide design, length of the gaps between the etched well edges and the device facets, and the well etch properties. Based on FDTD simulations and device misalignment statistics, it was shown that realistic, feasible improvements in the device alignment coupled with the use of higher index contrast waveguides could lower the coupling loss to 3.25 dB.
by Edward R. Barkley.
Ph.D.
Kot, J. S. "Rectangular dielectric waveguide for millimetre wave components." Thesis, University of Bath, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374605.
Full textClark, Jeffrey. "Double Negative Metamaterials in Dielectric Waveguide Configurations." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28708.
Full textPh. D.
Aryal, Krishna Prasad. "Design and simulation of a hybrid dielectric waveguide." Thesis, University of Massachusetts Boston, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1599234.
Full textWaveguides, in general are used as a means to route photons. Traditional dielectric waveguides, composed of a high index core surrounded by a low index cladding, produce maximum field intensities far from dielectric interfaces. This thesis presents the design of a plasmonic enhanced waveguide, which relocates the maximum optical field intensity from the center of the waveguide to an interfacial region defined by a dielectric and a negative index material. This is accomplished through the use of a metal film, positioned on top of a traditional ridge waveguide in those places where one wishes to excite a plasmon mode as opposed to the more traditional dielectric mode. Plasmon modes have their highest field intensity at the interface located between the metal and the dielectric. In this thesis, the waveguide dimensions of a hybrid dielectric waveguide are determined with the intent of producing single mode operation for a ridge waveguide with and without metal on top. A commercial Eigen mode solver (MODE Lumerical) is used to obtain all field profiles, waveguide effective index and waveguide loss. Multiple simulations were used to design a waveguide, which supports a single plasmonic mode when the metal film is in place and a single dielectric mode when the metal film is absent. Such a waveguide is expected to find use in the field of integrated quantum optics where quantum dots, defined by near surface confining potentials, require high interfacial fields for maximum dot/field interactions. Further, based on the final waveguide design height of ( 5µm ) and width of ( 7.9µm ), an effective index of ( 3.687 ) results when operated in the plasmon mode and (3.619) when operated in dielectric mode. This change in refractive index suggests such hybrid dielectric/plasmon waveguides can be used for the design of Bragg reflectors leading to plasmonic cavities, which, when coupled to the proposed near surface located quantum dots, can be used for the production and detection of single photons, required by many diverse engineered quantum systems, such as quantum communication, quantum metrology and quantum computation.
Abbas, Zulkifly. "Determination of the dielectric properties of materials at microwave frequencies using rectangular dielectric waveguide." Thesis, University of Leeds, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569541.
Full textKaradeniz, Erol. "Cylindrical high index contrast thin film dielectric optical waveguide." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2005. http://wwwlib.umi.com/cr/syr/main.
Full textVan, Gassen Kwinten. "Application of Twist Symmetry to a Cylindrical Dielectric Waveguide." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286829.
Full textAnvändandet av högre symmetrier I vågledardesigner är ett aktivt forskningsfält och fördelar över traditionell vågledardesign har påvisats. Det finns två typer av högre symmetri: glid- och vridsymmetri. Glid- och vridsymmetri har tidigare applicerats på stängda vågledare och glidsymmetri har nyligen applicerats på en dielektrisk vågledare. I detta arbete appliceras vridsymmetri i designen av en dielektrisk vågledare för första gången. I det här arbetet designas och simuleras en vridsymmetrisk dielektrisk med hjälp av egenmods, trunkerad-struktur- och mutimods-metoderna. Den vridsymmetriska dielektriska vågledaren påvisar stoppband, liknande de som tidigare visats i glidsymmetriska strukturer. Vidare visar strukturen cirkulärpolariserad dubbelbrytning och olika stoppband för de två cirkulära polarisationerna. En ny enhetscell togs fram vilken påvisade fenomenen kopplade till dielektrisk vridsymmetri för X-bands frekvenser. Dispersionsdiagrammet för strukturen beräknades med hjälp av egenmods- och multimodsmetoderna, och S-parametrarna för vågledaren beräknades med en trunkerad struktur. Resultaten från de olika metoderna stämmer väl överens gällande propagering och försvagning. Enhetscellen finner användning som polarisationsfilter för den fundamentale HE11-moden av dielektriska cirkulära vågledare och kan appliceras i kommunikations- och avkänningssystem.
Wells, Colin G. "Analysis of shielded rectangular dielectric rod waveguide using mode matching." University of Southern Queensland, Faculty of Engineering and Surveying, 2005. http://eprints.usq.edu.au/archive/00001524/.
Full textBoese, Ingo. "Millimetre wave measurements and device characterisation at 140 GHz." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242860.
Full textOgunlade, Olumide. "Measurement of the microwave dielectric properties of liquids using waveguide structures." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556018.
Full textBooks on the topic "Dielectric waveguide"
Maragkou, Stauroula. A theoretical investigation of bends in nonradiative dielectric waveguide. Manchester: UMIST, 1998.
Find full textGraglia, Roberto D., Giuseppe Pelosi, and Stefano Selleri, eds. International Workshop on Finite Elements for Microwave Engineering. Florence: Firenze University Press, 2016. http://dx.doi.org/10.36253/978-88-6655-968-9.
Full text1958-, Lu Yilong, ed. Microwave and optical waveguide analysis by the finite element method. Taunton, Somerset, England: Research Studies Press, 1996.
Find full textAmerican Telephone and Telegraph Company., ed. Theory of dielectric optical waveguides. 2nd ed. Boston: Academic Press, 1991.
Find full textYeh, C., and F. I. Shimabukuro. The Essence of Dielectric Waveguides. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-49799-0.
Full textMarcuse, Dietrich. Theory of dielectric optical waveguides. 2nd ed. London: Academic Press Inc, 1991.
Find full textI, Shimabukuro F., and SpringerLink (Online service), eds. The Essence of Dielectric Waveguides. Boston, MA: Springer Science+Business Media, LLC, 2008.
Find full textA novel transition between rectangular waveguide and layered ridge dielectric waveguide. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textUniversity of Illinois at Chicago. and United States. National Aeronautics and Space Administration., eds. Theory of circular dielectric waveguide with anisotropic sheet cover. Chicago, Ill: University of Illinois at Chicago, 1990.
Find full textBook chapters on the topic "Dielectric waveguide"
Weik, Martin H. "dielectric waveguide." In Computer Science and Communications Dictionary, 403. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_4965.
Full textWeik, Martin H. "dielectric optical waveguide." In Computer Science and Communications Dictionary, 402. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_4963.
Full textWeik, Martin H. "planar dielectric waveguide." In Computer Science and Communications Dictionary, 1283. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14143.
Full textWeik, Martin H. "slab dielectric waveguide." In Computer Science and Communications Dictionary, 1603. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17587.
Full textYeh, C. "Dielectric Waveguide Theory." In Recent Advances in Electromagnetic Theory, 367–86. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3330-5_15.
Full textOsgood, Richard, and Xiang Meng. "Dielectric Slab Waveguide." In Graduate Texts in Physics, 31–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65193-0_3.
Full textWeik, Martin H. "slab dielectric optical waveguide." In Computer Science and Communications Dictionary, 1603. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17586.
Full textWeik, Martin H. "doubly cladded slab dielectric waveguide." In Computer Science and Communications Dictionary, 459. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5578.
Full textBanerjee, Amal. "Transparent Dielectric Optical Waveguide Fundamentals." In Optical Waveguides Analysis and Design, 7–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93631-0_2.
Full textPollnau, Markus. "Waveguide fabrication methods in dielectric solids." In Advances in Spectroscopy for Lasers and Sensing, 335–50. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4789-4_18.
Full textConference papers on the topic "Dielectric waveguide"
Nikolaenko, D. V. "Waveguide-beam transducers on multimode dielectric waveguides." In 2014 24th International Crimean Conference "Microwave & Telecommunication Technology" (CriMiCo). IEEE, 2014. http://dx.doi.org/10.1109/crmico.2014.6959554.
Full textPollnau, Markus. "Dielectric waveguide lasers." In International Conference on Lasers, Applications, and Technologies '07, edited by Valentin A. Orlovich, Vladislav Panchenko, and Ivan A. Scherbakov. SPIE, 2007. http://dx.doi.org/10.1117/12.752833.
Full textPollnau, Markus. "Efficient dielectric waveguide lasers." In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550526.
Full textItoh, Tatsuo. "Leakage from dielectric waveguide." In 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014. IEEE, 2014. http://dx.doi.org/10.1109/mwsym.2014.6848262.
Full textMizernik, V. N., and N. I. Pyatak. "Ferrite-dielectric waveguide-resonator systems." In 2003 13th International Crimean Conference 'Microwave and Telecommunication Technology' Conference Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/crmico.2003.158904.
Full textAydogan, Ahmet, Funda Akleman, and Serkan Yildiz. "Dielectric loaded waveguide filter design." In 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE). IEEE, 2016. http://dx.doi.org/10.1109/isfee.2016.7803158.
Full textPoitras, Daniel, Penghui Ma, Pierre G. Verly, Zhenguo Lu, Jiaren Liu, Pedro Barrios, Juan Caballero, and Philip J. Poole. "Metal-Dielectric Waveguide Facet Coatings." In Optical Interference Coatings. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/oic.2016.tc.5.
Full textShanjia, Xu. "Dielectric waveguide branching directional coupler." In 1987 Twelth International Conference on Infrared and Millimeter Waves. IEEE, 1987. http://dx.doi.org/10.1109/irmm.1987.9126969.
Full textQudrat-E-Maula, Mohammad, Lotfollah Shafai, and Zahra A. Pour. "Dielectric loaded circular waveguide feeds." In 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE, 2014. http://dx.doi.org/10.1109/antem.2014.6887675.
Full textCallarotti, R. C., and E. Páez. "Microwave Dielectric Properties of Heavy Oil and Heating of Reservoirs." In SPE Energy Resources Conference. SPE, 2014. http://dx.doi.org/10.2118/spe-169937-ms.
Full textReports on the topic "Dielectric waveguide"
Yeh, C., J. Chu, and F. I. Shimabukuro. Dielectric Ribbon Waveguide-An Optimum Configuration for Ultralow-Loss Millimeter/Submillimeter Dielectric Waveguide. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada252393.
Full textJain, Ravi K. Efficient Near and Mid-Infrared Dielectric Waveguide Lasers. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada338743.
Full textRiggs, Lloyd S., and Charles A. Amazeen. Research with the Waveguide Beyond Cutoff or Separated Aperture Dielectric Anomaly Detection Scheme. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada227008.
Full textBigelow, W. S., and Everett G. Farr. Minimizing Dispersion in a Transverse Electromagnetic Waveguide Bend by a Layered Approximation of a Graded Dielectric Material. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada341706.
Full textSamaddar, S. N. Input Impedance of an Infinite Linear Scanned Array of Flat Rectangular Strips Inside a Dielectric Loaded Parallel Plate Waveguide. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada171275.
Full textYeh, Cavour. Dielectric Millimeter Waveguides. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada196844.
Full textLemery, Francois. Beam manipulation and acceleration with Dielectric-Lined Waveguides. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1221358.
Full textButler, Jerome K. Millimeter-Wave Applications of Semiconductor Dielectric Waveguides with Plasma Layers (Surface or Buried) Generated from Semiconductor Lasers. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada260484.
Full textShimabukuko, F. I., and C. Yeh. Attenuation Measurement of Very Low-Loss Dielectric Waveguides by the Cavity Resonator Method in the Millimeter/Submillimeter Wavelength Range. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada206458.
Full textGao, F. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/961732.
Full text