To see the other types of publications on this topic, follow the link: Diesel Engine.

Journal articles on the topic 'Diesel Engine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diesel Engine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moore, J. S., J. D. Maples, and Philip D. Patterson. "Light-Duty Diesels: Consumer Perspectives and U.S. Energy Supply Issues." Transportation Research Record: Journal of the Transportation Research Board 1641, no. 1 (January 1998): 19–26. http://dx.doi.org/10.3141/1641-03.

Full text
Abstract:
An assessment of the potential for diesel engine light-duty vehicles to reduce petroleum consumption and greenhouse gas emissions is presented. Historical diesel vehicle sales behavior is presented and analyzed. Future market penetration and resultant petroleum consumption and emission reductions for advanced diesel engines are projected. Results of a survey of new vehicle buyer attitudes toward improved diesel engines are presented and analyzed. Effects of increased diesel market share on diesel fuel supply and price are estimated. Overall, the outlook for diesels in light vehicles is somewhat promising if pollution issues and consumer concerns about the earlier diesels can be addressed.
APA, Harvard, Vancouver, ISO, and other styles
2

Matijošius, Jonas, Olga Orynycz, Sergii Kovbasenko, Vitalii Simonenko, Yevheniy Shuba, Valentyn Moroz, Serhiy Gutarevych, Andrzej Wasiak, and Karol Tucki. "Testing the Indicators of Diesel Vehicles Operating on Diesel Oil and Diesel Biofuel." Energies 15, no. 24 (December 7, 2022): 9263. http://dx.doi.org/10.3390/en15249263.

Full text
Abstract:
The growth in the number of cars and the increasing demand for fuels require scientific work to develop alternative fuels. The energy crisis, which is becoming more and more evident, is not unimportant. The manuscript presents an analysis of the possibility of using agricultural biofuels to power a diesel engine. The analysis was carried out in relation to the operation of the engine on conventional fuels. The D-241 engine under investigation is mainly used for agricultural tractors. During the tests carried out, the load characteristics of the diesel engine under investigation were determined as a function of fuel type and speed. The concentrations of CO, HC and NOx were analysed. Laboratory tests of the engine were carried out with a wide range of external loads to evaluate measurement errors for the measurement method. Experiments with the engine under investigation have shown that the hourly and specific biofuel consumption of diesel engines increases by an average of 11–16%. CO and NOx concentrations were found to be lower with increasing load compared to conventional diesel engines, while NOx concentrations are slightly increased. In all cases investigated, a decrease in exhaust development was observed.
APA, Harvard, Vancouver, ISO, and other styles
3

Hanifuddin, Hanifuddin, Milda Fibria, Catur Y. Respatiningsih, Setyo Widodo, and Maymuchar Maymuchar. "The Evaluation of Lubricants Performances in Light- and Heavy-Duty Diesel Engines in The Application of Biodiesel (B20)." Scientific Contributions Oil and Gas 43, no. 2 (August 31, 2020): 81–90. http://dx.doi.org/10.29017/scog.43.2.523.

Full text
Abstract:
The use of biodiesel as fuel in light- and heavy-diesel engine vehicles in general will negatively affects the lubricant performance. the changes in lubricants properties during the use of B20 were investigated. Two type of vehicles engines were used, namely heavy duty and light duty diesel engines. The road test wascarried out until 40,000 km, while the lubricant was drained and analysed only for 10,000 km of distances. The laboratory test was conducted to observe both fresh and used lubricants. The results show that the biodiesel dilutions were less than 2% both in light- and heavy-duty diesel engines. The kinematic viscositiesof 4 samples of used lubricants in light-duty diesel engine were decreased in the ranges of 0.58 – 7.5%, while in heavy-duty diesel engines were 4.66-16.04% from the initial values. The decreasing of TBNs were less than 14% in light-duty diesel engine and fewer than 16% in heavy-duty diesel engine fuelled by biodiesel (B20). Meanwhile, the acidity of used engine oil was increased until 173% for light-duty diesel engine and 63% heavy-duty diesel engine compare to the initial values. The results show that the metal additives decreased while wear metal increased. According to this study, the increasing of wear metal (copper) in the used lubricants were less than 23% in light-duty diesel engine and lower than 26% in heavy-duty diesel engine fuelled by biodiesel (B20). Meanwhile, the lead contents of used engine oil were increased to 3.2 ppm in heavy-duty diesel engine and was not detected in light-duty diesel engine. After all, this work found that the lubricants exhibit good performances in the light- and heavy-duty diesel engines fuelled by B20. The changes of some critical properties were still in the acceptable values regarding to the specification as required in the SNI-7069-5 (2021).
APA, Harvard, Vancouver, ISO, and other styles
4

G. Shatrov, Mikhail, Vladimir V. Sinyavski, Andrey Yu. Dunin, Ivan G. Shishlov, Andrey V. Vakulenko, and Andrey L. Yakovenko. "Using Simulation for Development of The Systems of Automobile Gas Diesel Engine and its Operation Control." International Journal of Engineering & Technology 7, no. 2.28 (May 16, 2018): 288. http://dx.doi.org/10.14419/ijet.v7i2.28.12947.

Full text
Abstract:
The work was aimed at the development of gas supply, diesel fuel supply and electronic control systems for automobile gas diesel engines. Different ways of diesel engine conversion to operate on natural gas were analyzed. Gas diesel process with minimized ignition portion of diesel fuel injected by the CR system was selected. Electronic engine control and modular gas feed systems which can be used on high- and middle-speed gas diesel engines were developed. Diesel CR fuel supply system was developed in cooperation with the industrial partner. Simulation was used to obtain basic parameters and control methods of these systems. The base diesel engine was converted into gas diesel engine using the systems developed. Bench tests of the gas diesel engine demonstrated a high share of diesel fuel substitution with gas, high fuel efficiency and large decrease of NOх and СО2 emissions.
APA, Harvard, Vancouver, ISO, and other styles
5

Marchenko, A. P., I. V. Parsadanov, and A. V. Savchenko. "DETERMINATION OF COMPLEX FUEL-ECOLOGICAL CRITERION FOR DIESEL WORKING ON WATER-FUEL EMULSION." Internal Combustion Engines, no. 2 (July 26, 2021): 31–37. http://dx.doi.org/10.20998/0419-8719.2021.2.04.

Full text
Abstract:
Today, internal combustion engines are very common as energy sources in many countries around the world. This makes the tasks related to improving the environmental performance of internal combustion engines relevant. The introduction of alternative fuels in internal combustion engines is an effective way to reduce their negative impact on the environment. One of the most available and widespread alternative fuels for diesels is a water-fuel emulsion. The use of water-fuel emulsion makes it possible to reduce the specific fuel consumption of petroleum origin, as well as to achieve a significant reduction in emissions of harmful substances from diesel exhaust. However, due to differences in the physical properties of traditional diesel fuel and water-fuel emulsion, the course of the processes of mixture formation and combustion in the diesel cylinder changes significantly. This may be due to the emergence of a reserve for further improvement of the diesel engine by selecting the parameters of the diesel engine running on water-fuel emulsion. The study selected the following parameters for variation: compression ratio, boost pressure, duration of the injection process, injection timing. The article considers the influence of these parameters on the Brake-specific fuel consumption of diesel, the specific emission of particulate matter and nitrogen oxides, the maximum pressure in the cylinder. The nature and degree of influence of changes in the parameters of the diesel engine on its performance was determined using mathematical modeling. It should be noted that the influence of each of the parameters selected for variation is quite complex and often ambiguous. That is, when some indicators improve, others may deteriorate somewhat. Therefore, in order to select the most rational parameters of a diesel engine running on a water-fuel emulsion, it is necessary to simultaneously assess the economic and environmental performance of the diesel engine. For this assessment, a method was used to determine a comprehensive fuel and environmental criterion for a diesel engine running on a water-fuel emulsion. Thus, the article shows the potential for comprehensive improvement of environmental and economic performance of the diesel engine by choosing rational parameters.
APA, Harvard, Vancouver, ISO, and other styles
6

Shatrov, Mikhail G., Vladimir V. Sinyavski, Andrey Yu Dunin, Ivan G. Shishlov, and Andrey V. Vakulenko. "METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES." Facta Universitatis, Series: Mechanical Engineering 15, no. 3 (December 9, 2017): 383. http://dx.doi.org/10.22190/fume171004023s.

Full text
Abstract:
The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR) system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.
APA, Harvard, Vancouver, ISO, and other styles
7

Karasev, Andrey V. "Genesis of autotractor diesel engineering and first diesel tractors." Tekhnicheskiy servis mashin, no. 1 (March 1, 2020): 207–15. http://dx.doi.org/10.22314/2618-8287-2020-58-1-207-215.

Full text
Abstract:
Agriculture needed a simple engine running on cheap fuel to switch to mechanical traction. Due to its simplicity and ability to work on oil, colorization engines have become widespread, including in agriculture. (Research purpose) The research purpose is in identifying the key issues that influenced the creation of diesel engines with divided combustion chamber: indirect, pre-chamber, as well as studying the story of the creation of the indirect diesel, the first diesel tractors. (Materials and methods) The article notes the importance of the International Congress of figures involved in the construction and use of internal combustion engines, and the exhibition organized at the same time. The exhibition presents 95 engines, 23 of them were created at Russian factories. The holding of the international event and the wide participation of domestic engine manufacturers in it testified to the development of engine design in Russia. (Results and discussion) The article notes that despite the success of the world engine building, the problem of creating a lightweight diesel of high specific power, suitable for installation on automotive equipment, has not been solved yet. The article consideres the history of creation of a high-speed turbocharged diesel engine with a "soft" flow of the working stroke. (Conclusions) A two-cylinder pre-chamber diesel engine with a capacity of 18 kilowatts (25 horsepower) at 800 rpm by P. L'Orange was produced by Benz & Cie in 1922 and intended for agricultural machinery. The Benz-Sendling S6 motor plow with the Benz & Cie diesel was launched in March 1923. In addition to three-wheeled tractors and motor plows, since 1923, Benz and Sendling have offered a four-wheeled model of the BK diesel tractor. The first serial diesel tractor in Europe is considered to be the Deutz tractor. Produced in 1927, the MTH 222 tractor was equipped with a 14-horsepower single-cylinder engine with an additional chamber.
APA, Harvard, Vancouver, ISO, and other styles
8

Cai, Zhi Hai, Ping Zhang, and Zhi Jie Liang. "Novel Remanufacturing Technology as an Alternative to Maintenance for Diesel Engine and its Benefit Analysis." Advanced Materials Research 216 (March 2011): 435–39. http://dx.doi.org/10.4028/www.scientific.net/amr.216.435.

Full text
Abstract:
To solve the maintaining shortcoming of diesel engine, the remanufacturing technology idea of diesel engines is put forward and discussed preliminary. Then it summarizes the difference and processing between remanufacturing and maintenance for diesel engine, and the technical measures that may bring about economic benefits for the enterprise. Then the application perspective of remanufacturing technology for equipment diesel engines was outlooked. Notable economy benefit will be gained prolonging the service life of diesel engine.
APA, Harvard, Vancouver, ISO, and other styles
9

Wardana, Muhammad Khristamto Aditya, and Ocktaeck Lim. "Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology." Catalysts 13, no. 1 (December 29, 2022): 67. http://dx.doi.org/10.3390/catal13010067.

Full text
Abstract:
The diesel engine is utilized in most commercial vehicles to carry items from various firms; nevertheless, diesel engines emit massive amounts of nitrogen oxides (NOx) which are harmful to human health. A typical approach for reducing NOx emissions from diesel engines is the selective catalytic reduction (SCR) system; however, several reasons make reducing NOx emissions a challenge: urea particles frequently become solid in the injector and difficult to disseminate across the system; the injector frequently struggles to spray the smaller particles of urea; the larger urea particles from the injector readily cling to the system; it is also difficult to evaporate urea droplets because of the exhaust and wall temperatures (Tw), resulting in an increase in solid deposits in the system, uncontrolled ammonia water solution injection, and NOx emissions problems. The light-duty diesel engine (LDD), medium-duty diesel engine (MDD), heavy-duty diesel engine (HDD), and marine diesel engine use different treatments to optimize NOx conversion efficiency in the SCR system. This review analyzes several studies in the literature which aim to increase NOx conversion in different diesel engine types. The approach and methods demonstrated in this study provide a suitable starting point for future research into reducing NOx emissions from diesel engines, particularly for engines with comparable specifications.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhukov, V., O. Melnik, and E. Khmelevskaya. "Changes in the kinematic viscosity of engine oil during the operation of marine diesel engines." Journal of Physics: Conference Series 2131, no. 3 (December 1, 2021): 032060. http://dx.doi.org/10.1088/1742-6596/2131/3/032060.

Full text
Abstract:
Abstract A prerequisite for the long-term and safe operation of marine diesel engines is the high quality of operational materials, which include engine oils and coolants. The required quality of operational materials is ensured by the introduction of additives into their composition, which are now increasingly used as nanoparticles. During operation, as a result of the destruction of additives, the operational properties of coolants and engine oils deteriorate. The conducted studies allowed us to evaluate the change in the lubricating ability of engine oils of two brands that are used in marine diesels during operation. As a characteristic of the lubricating ability of the oil, its kinematic viscosity was used. The experimental determination of the kinematic viscosity of engine oil samples having different periods of operation, and the subsequent mathematical processing of the experimental results made it possible to determine the dependencies characterizing the change in the kinematic viscosity of engine oil during its operation. The research results confirm the possibility of scientific justification for extending the use of marine diesel engine oils, which reduces operating costs and increases the environmental safety of marine diesel engines.
APA, Harvard, Vancouver, ISO, and other styles
11

DeGaspari, John. "A New Dawn for Diesel." Mechanical Engineering 127, no. 01 (January 1, 2005): 26–31. http://dx.doi.org/10.1115/1.2005-jan-1.

Full text
Abstract:
This article reviews that diesel engines are more expensive than gasoline engines and the lower fuel prices in the United States make buying decisions based on fuel economy alone unlikely. Many of the advancements have gone largely unnoticed by US drivers, who still view diesels as workhorses for large trucks. But some proponents of diesel say that a combination of higher torque, better fuel economy, and smooth, quiet engine performance could sway a significant number of drivers here to consider diesels for smaller, personal-use vehicles. Diesels provide better fuel efficiency than gasoline engines do and are well suited to heavy loads and continuous driving. Hauling a heavy load up a steep grade, the difference in fuel economy could be as high as 75 percent compared to conventional gasoline engines. Diesels could make a bigger impact on fuel consumption from a fleet perspective in this country, where people favor larger vehicles, than in Europe. Diesels deliver higher torque at lower speeds than gasoline engines, allowing drivers to get away with a comparatively smaller, lower horsepower diesel without sacrificing acceleration or towing capacity.
APA, Harvard, Vancouver, ISO, and other styles
12

LONGWIC, Rafał, Gracjana WOŹNIAK, and Przemysław SANDER. "Compression-ignition engine fuelled with diesel and hydrogen engine acceleration process." Combustion Engines 180, no. 1 (March 30, 2020): 47–51. http://dx.doi.org/10.19206/ce-2020-108.

Full text
Abstract:
The paper presents the results of research consisting in acceleration of a diesel engine powered by diesel and hydrogen. The test stand included a diesel engine 1.3 Multijet, hydrogen cylinders and measuring equipment. Empirical tests included engine testing at idle and at specified speeds on a chassis dynamometer, vehicle acceleration in selected gears from specified initial values of engine revolutions was also tested.. Selected parameters of the diesel fuel combustion and injection process were calculated and analyzed. The paper is a preliminary attempt to determine the possibility of co-power supply to diesel and hydrogen engines.
APA, Harvard, Vancouver, ISO, and other styles
13

Hamid, Abdul, Auliana Diah Wilujeng, Misbakhul Fatah, Mohammad Abdullah, Ainur Rohman, Faizatur Rohmah, and Annafiyah. "Utilization of Natural Zeolite as Emission Filter in Catalytic Converter of Diesel Engine." IOP Conference Series: Earth and Environmental Science 1097, no. 1 (October 1, 2022): 012066. http://dx.doi.org/10.1088/1755-1315/1097/1/012066.

Full text
Abstract:
Abstract The performance of natural zeolites in a catalytic converter to reduce the emission contents of diesel engine was studied in this research. Diesel engines are engines that use a high compression ratio to carry out a combustion process that will produce high contents of carbon monoxide (CO), nitrogen oxides (NOx), and sulfur oxide (SO2) in diesel engine exhaust gases. One solution to reduce the contents of exhaust gas compounds in diesel engines is to use catalytic converter technology. In this study, the catalytic converter used natural zeolite as an emission filter. The catalytic converter was designed in the form of a pipe made from iron plates and hollow balls that were used as natural zeolite holders. A diesel engine emission test was conducted using a gas analyzer with engine speed variations. The results show the highest reduction efficiency in the emission contents of diesel engine (carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2)) of 46.14%, 22.77%, and 90.56%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
14

Cui, Xiang Dong, Zhi De Zhang, and Bin Li. "Study on Energy Saving and Environmental Protection of Marine Dual Fuel Diesel Engine and Using Problems in China." Advanced Materials Research 1010-1012 (August 2014): 1912–17. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.1912.

Full text
Abstract:
With concern about the influence from hazardous emissions of marine diesel engine using fuel oil as fuel and international convention on marine diesel engine emission regulations, the new technology developments of foreign marine dual fuel diesel engines and their latest progresses are introduced, and the development trend of dual fuel diesel engine applications on ship demonstrated. The using problems of the marine dual fuel diesel engine in China are researched with an analysis and prospect of action and reaction in China.
APA, Harvard, Vancouver, ISO, and other styles
15

Muratov, Alexey, Andrey Balakin, Denis Bardin, Valentina Tselikovskaya, and Leyla Kurmanova. "Increasing the efficiency of series D49 diesel engines by transfer to gas engine fuel." Bulletin of scientific research results, no. 1 (March 28, 2019): 15–23. http://dx.doi.org/10.20295/2223-9987-2019-1-15-23.

Full text
Abstract:
Objective: Studying the effect of diesel locomotives on the use of natural gas as motor fuel. Identification of the main advantages of using natural gas in internal combustion engines. Analysis of the effect of gas engine fuel on the performance of diesel locomotive power plants. Methods: Simulation of the working process of two engines: the first – on diesel fuel, the second – on the gas mixture. Adjustment of the mathematical model according to the real parameters of 1А-5Д49-2 diesel engine, taken during the rheostat tests of 2ТЭ116 diesel locomotive. Conducting calculation and experimental studies to assess the effect of the complete replacement of diesel fuel with natural gas on the operation of the locomotive power plant; accumulation of computational and experimental data, their systematization and statistical analysis. Theoretical dependences of the change in the specific effective fuel consumption of a diesel engine operating on natural gas through the gas cycle on the position of the driver’s controller, as well as dependences of the change in the effective performance of a diesel engine have been discussed. The calculated values are compared for the diesel engine operating on natural gas and the diesel engine operating on diesel fuel. Results: The calculated dependencies of the performance of Series 1А-5Д49-2 (16ЧН26/26) diesel engine of 2ТЭ116 diesel locomotive with the use of gas engine fuel have been obtained. The obtained data has been analyzed allowing carrying out theoretical estimation of efficiency of natural gas used as gas engine fuel throughout the entire operating range of 1А-5Д49-2 (16ЧН26/26) diesel engine of 2ТЭ116 diesel locomotive. A conclusion was confirmed about the expediency and efficiency of using natural gas in railway transport, particularly diesel locomotives. The influence of replacement of diesel fuel with natural gas on the performance indicators of diesel locomotives has been determined. Practical importance: The obtained dependencies will help in forecasting and in the theoretical evaluation of the feasibility of using natural gas as a motor fuel for locomotive power plants.
APA, Harvard, Vancouver, ISO, and other styles
16

Noh, Kichol, and Changhee Lee. "Development of an Ignition System and Assessment of Engine Performance and Exhaust Characteristics of a Marine Gas Engine." Sustainability 13, no. 8 (April 7, 2021): 4097. http://dx.doi.org/10.3390/su13084097.

Full text
Abstract:
In recent years, marine engine manufacturers have become increasingly interested in gas engines as an alternative to diesel engines to address rising crude oil prices and environmental regulations. In this study, a 1.6 MW dedicated gas engine was developed based on a diesel engine with bore 220, stroke 300. The developed gas engine had a precombustion chamber and exhibited excellent performance; the brake mean effective pressure was 2.1 MPa at 1000 rpm and NOx emissions were 50 ppm under 15% O2. In particular, it demonstrated excellent fuel economy with a thermal efficiency of 45%, and its carbon dioxide emissions were ~75% of the conventional diesel engines, thus demonstrating greenhouse gas reduction. These results indicate that suitably developed gas engines can provide a low-cost and energy-efficient alternative to diesel engines.
APA, Harvard, Vancouver, ISO, and other styles
17

Nutu, Nikolaos Cristian, Constantin Pana, Alexandru Dobre, Niculae Negurescu, and Alexandru Cernat. "Theoretical and Experimental Study of the Fuelling a Truck Diesel Engine with Liquefied Petroleum Gas." Applied Mechanics and Materials 822 (January 2016): 198–205. http://dx.doi.org/10.4028/www.scientific.net/amm.822.198.

Full text
Abstract:
The increasing price of the fuels and tightening of the pollution rules requires the use of some efficient fuelling methodes with altenative fuels for diesel engines. Fuelling with LPG of a diesel engine is a viable sollution, considering that it can be used the infrastructure for distribution and storage already used for spark ignition engines. In this work are presented results of theoretical and experimental investigations of a truck diesel engine fuelled with LPG by diesel-LPG methode. The main objective research is the decrease of the nitric oxides emissions with the premise that the engine power is maintained at the same level like in the case of the standard engine, fuelled only with diesel fuel.
APA, Harvard, Vancouver, ISO, and other styles
18

Dobre, Alexandru, Constantin Pana, Nikolaos Cristian Nutu, Niculae Negurescu, and Alexandru Cernat. "Theoretical and Experimental Researches Regarding the Use of Butanol at Diesel Engine." Applied Mechanics and Materials 659 (October 2014): 183–88. http://dx.doi.org/10.4028/www.scientific.net/amm.659.183.

Full text
Abstract:
Due to the increasing growth of fuel consumption and also its price, alcohols begin to show a real interest for their use as fuel at compression ignition engines. Tightening the requirements on reducing the level of pollutant emissions and greenhouse effect gases has led to the increasing of research on using alcohols as alternative fuel for diesel engine. Among the primary alcohols, butyl alcohol (butanol) is considered to be of great perspective in its use as fuel in diesel engines, due to its properties close to those of diesel fuel. The overall objective of the paper represents using butanol at an automotive diesel engine in order to reduce BSFC, to reduce engine emissions and replace fossil fuels. This paper presents some aspects of the operation of diesel engine fuelled with blends of diesel fuel and butanol. Results of theoretical and experimental investigations done on a 1.5 L diesel engine fuelled with butanol are presented. At the use of butanol in mixture with diesel fuel in different proportions (10% and 20% butanol vol.), brake specific energetic consumption of the engine was reduced by about 2.5% and respectively 5%, NOx emissions decreased by about 15% and respectively 20%, CO2 emission by about 5% for 20% butanol, at the engine running at full load and maximum torque engine speed. The results of experimental investigations have validated the physical-mathematical model used for the simulation of thermo-gas-dynamics processes from the inside engine cylinder. The paper brings real contributions in the field making available to specialists new information related to the use of butanol at the diesel engines.
APA, Harvard, Vancouver, ISO, and other styles
19

Anggono, Willyanto, Wataru Ikoma, Haoyu Chen, Zhiyuan Liu, Mitsuhisa Ichiyanagi, and Takashi Suzuki. "Effect of Various Supercharger Boost Pressure to in-Cylinder Pressure and Heat Release Rate Characteristics of Direct Injection Diesel Engine at Various Engine Rotation." E3S Web of Conferences 130 (2019): 01036. http://dx.doi.org/10.1051/e3sconf/201913001036.

Full text
Abstract:
The diesel engines are superior in terms of power efficiency and fuel economy compared to gasoline engines. In order to optimize the performance of direct injection diesel engine, the effect of various intake pressure (boost pressure) from supercharging direct injection diesel engine was studied at various engine rotation. A single cylinder direct injection diesel engine was used in this experiment. The bore diameter of the engine used was set to 85 mm, the stroke length was set to 96.9 mm, and the compression ratio was set to 16.3. The variation of engine rotation started from 800 rpm to 2 000 rpm with 400 rpm increment. The variation of boost pressure is bounded from 0 kPa boost pressure (naturally aspirated) to the maximum of 60 kPa boost pressure with 20 kPa boost pressure increment. The performance of the engine is evaluated in terms of in-cylinder pressure and heat release rate as the most important performance characteristics of the diesel engine. The in-cylinder pressure and heat release rate of direct injection diesel engine are increased with the elevation of boost pressure at various engine rotation. The raise of engine rotation resulted in the decrease of maximum in-cylinder pressure and heat release rate.
APA, Harvard, Vancouver, ISO, and other styles
20

Konyukov, Vyacheslav Leontievich. "Comparative analysis of marine diesel engines by ultimate efficiency increase under direct air flow control." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2021, no. 2 (May 31, 2021): 43–54. http://dx.doi.org/10.24143/2073-1574-2021-2-43-54.

Full text
Abstract:
The paper presents a comparative analysis of the operational parameters and parameters of marine diesel engines obtained as a result of computational and theoretical studies with direct control of air flow using an adjustable turbocharger nozzle to ensure the maximum allowable efficiency of diesel engines. The objects under study are: two-stroke marine diesel engine, operating on the screw characteristics; marine four-stroke diesel working on the screw characteristics; marine four-stroke diesel working on the load characteristics. As a result of the rotation of the blades of the adjustable nozzle in the direction of reducing the angle of their installation the diesel engine efficiency increases. However, the maximum pressure of the cycle also increases, the pressure drop decreases during purging the cylinders, the effective angle of gas exit from the turbine nozzle decreases, and the compressor's surge stability margin changes. There has been studied the design potential of diesel engines for the maximum increase in their efficiency, which made it possible to accept the stable operation of the compressor in all the studied modes. In the course of the research, boundary values were found for the maximum pressure of the diesel cycle, the pressure drop for purging the cylinders and the effective angle of flow exit from the nozzle apparatus, beyond which the specified parameters did not go beyond all the studied modes of operation of diesels. Taking into account the limitations of the greatest potential for improving efficiency in the equity modes of loads has a four-stroke diesel engine, operating on the screw characteristics, the smallest capacity is the same petrol, but working on the load characteristics.
APA, Harvard, Vancouver, ISO, and other styles
21

Permana, Ade Indra. "Performance Analysis of Diesel Engine Simulation Into CNG Engine." AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin 8, no. 2 (August 5, 2022): 110. http://dx.doi.org/10.32832/ame.v8i2.6944.

Full text
Abstract:
<pre><em>The fundamental problem in meeting fuel consumption for the operation of diesel engines is in terms of costs and ensuring the availability of the fuel. So that the idea of using alternative fuels other than diesel fuel arises. And the recommendation is gas fuel (compressed natural gas) for several reasons including cheaper prices and Indonesia has abundant natural gas reserves. Because the properties of CNG and diesel oil are different, it is necessary to modify the diesel engine before being able to use alternative gas fuels. And in this journal, what is analyzed is the performance of diesel engines and diesel engines that have been modified into CNG engines connected to RPM. The analyzed performance includes brake power, brake torque, fuel consumption, and volumetric efficiency. The analysis process is carried out through a simulation using the GT-Power software. From the simulation, it is known that the use of CNG as a fuel reduces exhaust emissions even though it reduces engine performance in terms of power, torque, BMEP. And tends to increase fuel consumption.</em><em></em></pre>
APA, Harvard, Vancouver, ISO, and other styles
22

Iswantoro, Adhi, I. Made Ariana, and Muhammad Syuhri. "Analysis of Exhaust Gas Emissions on Dual Fuel Diesel Engine Single Cylinder Four-stroke with LPG-Diesel Oil." IOP Conference Series: Earth and Environmental Science 972, no. 1 (January 1, 2022): 012034. http://dx.doi.org/10.1088/1755-1315/972/1/012034.

Full text
Abstract:
Abstract Diesel engine is one of type of internal combustion engine that is applied in industry, including the maritime industry. The increasing use of diesel engines, has a effect on increasing emissions. Diesel engines emissions consist of SOx, NOx, HC, and others. To reduce the emissions, there are many method, one of them is using dual-fuel system. The alternative fuel can be used is Gas, which is easily available, namely LPG or liquefied petroleum gas. To supply LPG to combustion chamber, a converter-kit are needed to be install on diesel engine. There are several previous research that prove that LPG can be used as an alternative in a dual-fuel system and can reduce the emissions. One of them by Ma’amuri (2016) who designed a mechanical LPG-diesel oil as dual-fuel, using a membrane converter. Result of this research provide that good diesel engine performance. In this research, LPG-diesel oil as dual-fuel using converter kit based on ECU or electronic control unit, and then, analyze the diesel engine emissions with experimental method. The purpose of this research is to determine the emissions produced by LPG-diesel oil as dual-fuel with converter kit based ECU. After taking and analytical data, known that the NOx emission from dual fuel diesel engine using ECU-based converter kit is lower than NOx emission from conventional diesel engine with B30 diesel fuel with percentage is 25,61 % for 3ms opening duration of gas injector, 39,99 % for 4 ms opening duration of gas injector and 26,5 % for 5 ms opening duration of gas injector. The NOx emission of conventional diesel engine is 2,46 g/kWh.
APA, Harvard, Vancouver, ISO, and other styles
23

Gustavsson, Jonas, and Valeri Golovitchev. "3 D Simulation of Multiple Injections in DI Diesel Engine(Diesel Engines, Combustion Modeling II)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 167–74. http://dx.doi.org/10.1299/jmsesdm.2004.6.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Herman S., Alfred, and V. Ganesan. "Effect of Injection Rate Control in a HSDI Diesel Engine(Diesel Engines, Combustion Modeling II)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 189–98. http://dx.doi.org/10.1299/jmsesdm.2004.6.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Blizzard, D. T., F. S. Schaub, and J. G. Smith. "Development of the Cooper-Bessemer CleanBurn™ Gas-Diesel (Dual-Fuel) Engine." Journal of Engineering for Gas Turbines and Power 114, no. 3 (July 1, 1992): 480–87. http://dx.doi.org/10.1115/1.2906614.

Full text
Abstract:
NOx emission legislation requirements for large-bore internal combustion engines have required engine manufacturers to continue to develop and improve techniques for exhaust emission reduction. This paper describes the development of the Cooper-Bessemer Clean Burn™ gas-diesel (dual-fuel) engine that results in NOx reductions of up to 92 percent as compared with an uncontrolled gas-diesel engine. Historically, the gas-diesel and diesel engine combustion systems have not responded to similar techniques of NOx reduction that have been successful on straight spark-ignited natural gas burning engines. NOx levels of a nominal 1.0 g/BHP-h, equal to the spark-ignited natural gas fueled engine, have been achieved for the gas-diesel and are described. In addition, the higher opacity exhaust plume characteristic of gas-diesel combustion is significantly reduced or eliminated. This achievement is considered to be a major breakthrough, and the concept can be applied to both new and retrofit applications.
APA, Harvard, Vancouver, ISO, and other styles
26

Cheng, Wen Ming, and Jia Liu. "Emission Characteristics Comparison of a Common Rail Diesel Engine Fuelled with Diesel and Biodiesel." Applied Mechanics and Materials 127 (October 2011): 237–41. http://dx.doi.org/10.4028/www.scientific.net/amm.127.237.

Full text
Abstract:
Diesel engines are widely used in almost all walks of life and cannot be dispensed with in the near future, and common rail technology is now widely applied in diesel engines for its advantages. An experimental investigation is carried out to establish the emission characteristics of a common rail diesel engine fuelled with diesel and biodiesel produced from cottonseed oil. The emissions measured were carbon monoxide, hydrocarbon, oxides of nitrogen and smoke. From the results, it is found that most exhaust emissions encountered with conventional diesel fuel are reduced with biodiesel fuel, with the exception of nitrogen oxides. From the investigation it can be concluded that biodiesel can be used as an alternative to diesel in a common rail diesel engine without any engine modifications.
APA, Harvard, Vancouver, ISO, and other styles
27

Nutu, Nikolaos Cristian, Constantin Pana, Niculae Negurescu, Alexandru Cernat, Dinu Fuiorescu, and Ionel Mirica. "A research on fuelling a truck diesel engine with hydrogen." E3S Web of Conferences 112 (2019): 01011. http://dx.doi.org/10.1051/e3sconf/201911201011.

Full text
Abstract:
The paper presents experimental and theoretical investigations results of a truck diesel engine fuelled with diesel fuel and hydrogen by diesel-gas method. The purpose of the paper is to reduce the level of the nitrogen oxides emission level and to improve the overall performances of the engine. The use of hydrogen represents a suitable method to reduce the classic fuels consumption, maintaining the energetic performances of the engine. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department of University Politechnica of Bucharest was adapted for hydrogen fuelling of the truck diesel engine. The engine used for investigations is a turbocharged 10.2 l truck diesel engine which run at 1450 rpm and 40% engine load. By hydrogen fuelling if the investigated diesel engine a decrease has been achieved in the nitrogen oxides emission level and in the smoke emission level. Also the break energetic specific consumption decreased compared to the standard diesel engine. The theoretical investigations presented in tha paper are based on a semi-empirical corellation, used to simulate the nitrogen monoxide emission formation. The results of the experimental investigations confirm de viability of hydrogen as an alternative fuel for the diesel engine.
APA, Harvard, Vancouver, ISO, and other styles
28

Parker, J. K., S. R. Bell, and D. M. Davis. "An Opposed-Piston Diesel Engine." Journal of Engineering for Gas Turbines and Power 115, no. 4 (October 1, 1993): 734–41. http://dx.doi.org/10.1115/1.2906767.

Full text
Abstract:
Typical conventional diesel engine designs are based on arrangements of single piston and cylinder sets placed sequentially either in-line or offset (“V”) along the crankshaft. The development of other engines, such as the opposed piston type, has been motivated by potential advantages seen in such designs, which may not be viable in conventional in-line or V engine arrangements. Several alternatives to conventional engine design have been investigated in the past and some aspects of these designs have been utilized by engine manufacturers. The design and development of a proof-of-concept opposed piston diesel engine is summarized in this paper. An overview of opposed-piston engines is presented from early developments to current designs. The engine developed in this work is a two stroke and uses four pistons, which move in two parallel cylinders that straddle a single crankshaft. A prechamber equipped with a single fuel injector connects the two cylinders, forming a single combustion chamber. The methodology of the engine development process is discussed along with details of component design. Experimental evaluations of the assembled proof-of-concept engine were used for determining feasibility of the design concept. An electric dynamometer was used to motor the engine and for loading purposes. The dynamometer is instrumented for monitoring both speed and torque. Engine parameters measured include air flow rate, fuel consumption rate, inlet air and exhaust temperatures, and instantaneous cylinder gas pressure as a function of crank position. The results of several testing runs are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
29

Peng, Chen. "Wear Test of Cylinder Liner and Piston Ring of Marine Diesel Engine Based on Computer Simulation Technology." Journal of Physics: Conference Series 2074, no. 1 (November 1, 2021): 012033. http://dx.doi.org/10.1088/1742-6596/2074/1/012033.

Full text
Abstract:
Abstract With the development of computer technology, computer simulation has become a powerful tool to carry out liner - piston ring wear experiment of Marine diesel engines. Turbocharged diesel engine is a typical multi-system and multi-level complex power plant. There are many factors that affect the piston change and wear speed of diesel engine in practical operation, and many factors are interrelated and influence each other. Marine diesel engine is the most important mechanical equipment in Marine engine room, which has a complex system structure. If the diesel engine fails, it will seriously affect the navigation safety of the ship. In order to reduce the loss of Marine diesel engine piston ring wear, it is necessary to rely on fault diagnosis technology for timely and reliable diagnosis and maintenance.
APA, Harvard, Vancouver, ISO, and other styles
30

GĘCA, Michał, Zbigniew CZYŻ, and Mariusz SUŁEK. "Diesel engine for aircraft propulsion system." Combustion Engines 169, no. 2 (May 1, 2017): 7–13. http://dx.doi.org/10.19206/ce-2017-202.

Full text
Abstract:
Stricter requirements for power in engines and difficulties in fueling gasoline engines at the airport make aircraft engine manufac-turers design new engines capable of combusting fuel derived from JET-A1. New materials used in compression-ignition engines enable weight reduction, whereas the technologies of a Common Rail system, supercharging and 2-stroke working cycle enable us to increasethe power generated by an engine of a given displacement. The paper discusses the parameters of about 40 types of aircraft compression ignition engines. The parameters of these engines are compared to the spark-ignition Rotax 912 and the turboprop. The paper also shows trends in developing aircraft compression-ignition engines.
APA, Harvard, Vancouver, ISO, and other styles
31

Ramlan, Nur Atiqah, Mohd Herzwan Hamzah, Nur Fauziah Jaharudin, Abdul Adam Abdullah, and Rizalman Mamat. "Analysis of Diesel Engine Performance Fueled with Waste Cooking Oil." Applied Mechanics and Materials 465-466 (December 2013): 418–22. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.418.

Full text
Abstract:
Waste cooking oil (WCO) is one of the economical and easiest sources for biodiesel production. The use of WCO in diesel engine is sustainable if they can perform similarly to diesel fuel. Therefore, this paper presents the performance and combustion characteristics of a single cylinder diesel engine fueled with biodiesel from WCO and compared with diesel fuel. In this study, the WCO was blended with diesel fuel at 5% and 10% blending ratio and named as B5 and B10 respectively. The experiment has been conducted at variable engine speed, constant load and at compression ratios of 17.7. The performance parameters that have been analyzed in this experiment were engine power, torque and in-cylinder pressure. In the end, results show that the engine performance of B5 and B10 was slightly similar to diesel fuel and can be used as a diesels substitute.
APA, Harvard, Vancouver, ISO, and other styles
32

Rajashekhar, C. R., T. K. Chandrashekar, C. Umashankar, and R. Harish Kumar. "Reductions of Bio-Diesel Exhaust Emissions through Engine Combustion Chamber Design Modifications — An Experimental Study." Applied Mechanics and Materials 592-594 (July 2014): 1751–55. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1751.

Full text
Abstract:
Increased demand and production in all segments of the automotive industry has driven the nation to impose stringent emission norms for automobile engines. At this juncture, bio-diesel has sufficient attraction as vehicular fuel. But the properties of bio-diesels are not the same as diesel fuels, including high viscosity and low volatility. Due to this inherent problem it exhibits poor atomization, which results in incomplete combustion and increased exhaust emissions. This naturally implies that automotive designers have to focus their research more on engine emissions while at the same time not compromising on power development. This has put enormous pressure on automotive industry to design the engine efficiently and economically to compete with the global market. This paper relates the modification of engine combustion chamber design, for inducing turbulence to improve the combustibility of combustible mixture of karanja bio-diesel and to reduce the exhaust emissions. The modification includes the tri-chambered piston and twisting blade pistons. In the present work the emission characteristics of modified piston engine are compared with the standard piston engine. It was observed that the CO and UBHC emissions can be effectively reduced with tri-chambered piston engine.
APA, Harvard, Vancouver, ISO, and other styles
33

Kuang, Xin, Sheng Ji Liu, Jian Sun, and Jian Wang. "A Study on Emissions of Small Diesel Engines." Advanced Materials Research 805-806 (September 2013): 1812–16. http://dx.doi.org/10.4028/www.scientific.net/amr.805-806.1812.

Full text
Abstract:
Taking a small diesel engine as the prototype, emission researches for its structural features and different uses are carried out. Obvious differences of emissions for the same diesel engine using different test cycles are shown. By analyzing the test result, it has been found that the weighting factor of each mode is only part of the factors for the large differences of the emission values. The contributions of individual modes are used to analyze the mechanism of changing emissions of the diesel engine and it is found that reducing NOX of the full load for the mobile non-road diesel engine is the key to reach emission standard; for the fixed diesel engine, CO emission must be controlled at the same time. It has been found that it is necessary to take different combustion optimization parameters or measures to reduce the emission of the diesel engine according to the different uses of small diesel engine engines.
APA, Harvard, Vancouver, ISO, and other styles
34

Lus, Tomasz. "Changes in Marine Diesel Engines Operating Strategy." New Trends in Production Engineering 1, no. 1 (October 1, 2018): 739–46. http://dx.doi.org/10.2478/ntpe-2018-0093.

Full text
Abstract:
Abstract Constant changes in the operating strategy of marine diesel engines are observed. They refer to whole engine and different functional systems of the engine in different range. The paper presents changes in marine diesel engines operating strategy. Gradual transition from simple failure response operating strategy – Corrective Maintenance (CM) to a reliability-oriented strategy – Reliability Centered Maintenance (RCM) has been described together with some remarks about Planed Maintenance (PM) systems and Condition Based Maintenance (CBM) systems with their latest form called CBM+. Some information about changes in diesel engines operating strategy in the Polish Navy (PN) at the turn of the last 35 years is also presented. An attempt to build engine analyzer for high-speed diesel engines at the Polish Naval Academy (PNA) in order to improve submarine diesel engines operating strategy is also described in the paper.
APA, Harvard, Vancouver, ISO, and other styles
35

Cernat, A., C. Pana, N. Negurescu, and C. Nutu. "A theoretical study on hydrogen - diesel fuel dual fuelled diesel engine operation." IOP Conference Series: Materials Science and Engineering 1262, no. 1 (October 1, 2022): 012062. http://dx.doi.org/10.1088/1757-899x/1262/1/012062.

Full text
Abstract:
Alternative fuels use can improve the performance of diesel engine [1], [2], [3].The use of hydrogen to fuel diesel engine [4], [5] maybe a good solution to which can be applied for the future diesel engines of years 2030-2050, with benefits on reduction of the pollution gases and of the CO2 emission exhaust. Good combustion properties of the hydrogen define this fuel as an adequate alternative fuel for diesel engines, but special fuelling method must be assured in order to ensure the normal engine operation. The paper presents an analysis of the theoretical results obtained from in-cylinder process modelling developed for a single cylinder diesel engine fueled with diesel fuel and hydrogen at the speed of 900 rev/min. Mechanical operation of the engine for hydrogen-diesel fuelling is analysed based on pressure diagrams, heat release rate diagrams for a 20% amount of hydrogen. For hydrogen fuelling the maximum pressure variates with almost 2% and the maximum temperature with 2.3% which influence the heat release rate comparative to classic fuelling. The influences of combustion process are related with the influence of the hydrogen cyclic dose on vaporization and mixture forming processes. Dual fuelling, with hydrogen and diesel fuel, may influence the level of the pollutant emissions or CO2.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Liang, Dongxin Xue, Xigeng Song, Zhaoqi He, and Dongjie Huang. "A Study on Anti-Shock Performance of Marine Diesel Engine Based on Multi-Body Dynamics and Elastohydrodynamic Lubrication." Applied Sciences 11, no. 23 (November 27, 2021): 11259. http://dx.doi.org/10.3390/app112311259.

Full text
Abstract:
Diesel engine anti-shock performance is important for navy ships. The calculation method is a fast and economic way compared to underwater explosion trial in this field. Researchers of diesel engine anti-shock performance mainly use the spring damping model to simulate the main bearings of a diesel engine. The elastohydrodynamic lubrication method has been continuously used in the main bearings of diesel engines in normal working conditions. This research aims at using the elastohydrodynamic lubrication method in the main bearings of the diesel engine in external shock conditions. The main bearing elastohydrodynamic lubrication and diesel engine multi-body dynamics analysis is based on AVL EXCITE Power Unite software. The external shock is equivalent to the interference on the elastohydrodynamic lubrication calculation. Whether the elastohydrodynamic lubrication algorithm can complete the calculation under interference is the key to the study. By adopting a very small calculation step size, a high number of iterations, and increasing the stiffness of the thrust bearing, the elastohydrodynamic lubrication algorithm can be successfully completed under the external impact environment. The calculation results of the accelerations on engine block feet have a similar trend as the experiment results. Diesel engines with and without shock absorbers in external shock conditions are calculated. This calculation model can also be used for diesel engine dynamics calculations and main bearing lubrication calculations under normal working conditions.
APA, Harvard, Vancouver, ISO, and other styles
37

Setiyo, Muji, Dori Yuvenda, and Olusegun David Samuel. "The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis." Indonesian Journal of Science and Technology 6, no. 3 (August 21, 2021): 469–90. http://dx.doi.org/10.17509/ijost.v6i3.38430.

Full text
Abstract:
Currently, many countries are promoting B100 as the main fuel for diesel engines towards the transition to 100% renewable energy applications. However, due to its properties, B100 has both advantages and disadvantages to replace diesel oil. Therefore, a bibliometric analysis was carried out to evaluate the performance and emissions of a diesel engine with the B100 being tested on a multi-cylinder diesel engine for cars. Unfortunately, only 12 of the 127 selected articles are eligible to be reviewed in detail and none of them discusses all the key performance of diesel engines which include Brake Thermal Efficiency (BTE), Specific Fuel Consumption (SFC), Cylinder Pressure (CPs), Heat Release Rate (HRR), NOx, and smoke. Through data synthesis, we found that the use of B100 provides advantages in engine noise, thermal efficiency, specific fuel consumption, and emissions under certain engine loads. On the other hand, it also has the potential to result in poorer performance, if there is no modification to engine components and the addition of additives. As a recommendation, the results of this analysis provide a guide for further research to examine the use of B100 with all diesel engine performance variables. Research paths can be developed with the wider potential to provide new arguments on various diesel engine technologies, engine capacities, B100 raw materials, and test environments.
APA, Harvard, Vancouver, ISO, and other styles
38

NATRIASHVILI, Tamaz M., and Revaz Z. KAVTARADZE. "SPECIAL FEATURES OF THE HYDROGEN-DIESEL ENGINE WORKING PROCESS." Mechanics of Machines, Mechanisms and Materials 1, no. 58 (March 2022): 31–36. http://dx.doi.org/10.46864/1995-0470-2022-1-58-31-36.

Full text
Abstract:
The works related to the research of the problems and prospects of a hydrogen-fueled reciprocating engine, published so far, mainly relate to the use of hydrogen in spark-ignition engines. Developments of BMW, Toyota and other manufacturers are used in production car models. However, despite a number of advantages, serial production of hydrogen-diesel engines does not yet exist. This paper presents some results of the study of the working process features of a hydrogen-diesel engine with direct injection of hydrogen gas, analyzes the problems and prospects of the concept of the hydrogen-diesel engine. The obtained results of 3D modelling of the working process and experimental research prove the prospects and reality of the implementation of the hydrogen-diesel engine concept.
APA, Harvard, Vancouver, ISO, and other styles
39

Kathri, Akasyah M., Rizalman Mamat, Amir Aziz, Azri Alias, and Nik Rosli Abdullah. "One-Dimensional Simulation of the Combustion Process in an Engine Cylinder with Ethanol." Applied Mechanics and Materials 660 (October 2014): 447–51. http://dx.doi.org/10.4028/www.scientific.net/amm.660.447.

Full text
Abstract:
The diesel engine is one of the most important engines for road vehicles. The engine nowadays operates with different kinds of alternative fuels, such as natural gas and biofuel. The aim of this article is to study the combustion process that occurs in an engine cylinder of a diesel engine when using biofuel. The one-dimensional numerical analysis using GT-Power software is used to simulate the commercial four-cylinder diesel engine. The engine operated at high engine load and speed. The ethanol fuel used in the simulation is derived from the conventional ethanol fuel properties. The analysis of simulations includes the cylinder pressure, combustion temperature and rate of heat release. The simulation results show that in-cylinder pressure and temperature for ethanol is higher than for diesel at any engine speed. However, the mass fraction of ethanol burned is similar to that of diesel. MFB only affects the engine speed.
APA, Harvard, Vancouver, ISO, and other styles
40

Erokhov, V. I., G. G. Nadareishvili, and A. S. Blinov. "Analysis of the Effectiveness of the Use of Nitrogen Oxide Reducing Agent of Exhaust Gases of Diesel Engines." Engines Construction, no. 289 (September 2022): 48–63. http://dx.doi.org/10.18698/jec.2022.3.48-63.

Full text
Abstract:
The relevance of the article is due to the need to radically improve the environmental performance of automobile diesels. The most significant gaseous toxic component of spent diesel engines are nitrogen oxides. The mechanisms and models of nitrogen oxides formation in the diesel combustion chamber are considered. The analysis of methods for reducing the emission of nitrogen oxides with diesel exhaust gases has been carried out. The most effective method of their purification from nitrogen oxides is the use of SCR technology, in which an aqueous urea solution is supplied to the diesel exhaust system. At a temperature of about 130 °C, urea decomposes into ammonia and carbon dioxide. Ammonia released from urea reacts with nitrogen oxides of exhaust gases, reducing them to nitrogen. A method for calculating the urea supply to the diesel exhaust system has been developed. Tests of the YAMZ-6566 diesel engine equipped with the SCR system were carried out. With an excess urea ratio of 1.03, the efficiency of the SCR system ranged from 89 to 100 %, depending on the operating mode of the diesel engine.
APA, Harvard, Vancouver, ISO, and other styles
41

Kryshtopa, Sviatoslav, Krzysztof Górski, Rafał Longwic, Ruslans Smigins, Liudmyla Kryshtopa, and Jonas Matijošius. "Using Hydrogen Reactors to Improve the Diesel Engine Performance." Energies 15, no. 9 (April 20, 2022): 3024. http://dx.doi.org/10.3390/en15093024.

Full text
Abstract:
This work is aimed at solving the problem of converting diesel power drives to diesel–hydrogen fuels, which are more environmentally friendly and less expensive alternatives to diesel fuel. The method of increasing the energy efficiency of diesel fuels has been improved. The thermochemical essence of using methanol as an alternative fuel to increase energy efficiency based on the provisions of thermotechnics is considered. Alternative methanol fuel has been chosen as the initial product for the hydrogen conversion process, and its energy value, cost, and temperature conditions have been taken into account. Calculations showed that the caloric effect from the combustion of the converted mixture of hydrogen H2 and carbon monoxide CO exceeds the effect from the combustion of the same amount of methanol fuel. Engine power and fuel energy were increased due to the thermochemical regeneration of engine exhaust gas heat. An experimental setup was created to study the operation of a converted diesel engine on diesel–hydrogen products. Experimental studies of power and environmental parameters of a diesel engine converted for diesel–hydrogen products were performed. The studies showed that the conversion of diesel engines to operate using diesel–hydrogen products is technically feasible. A reduction in energy consumption was accompanied by an improvement in the environmental performance of the diesel–hydrogen engine working together with a chemical methanol conversion thermoreactor. The formation of carbon monoxide occurred in the range of 52–62%; nitrogen oxides in the exhaust gases decreased by 53–60% according to the crankshaft speed and loading on the experimental engine. In addition, soot emissions were reduced by 17% for the engine fueled with the diesel–hydrogen fuel. The conversion of diesel engines for diesel–hydrogen products is very profitable because the price of methanol is, on average, 10–20% of the cost of petroleum fuel.
APA, Harvard, Vancouver, ISO, and other styles
42

Likhanov, V. A., A. V. Grebnev, M. L. Skryabin, and A. E. Toropov. "Adjustment characteristics of the diesel engine operating on natural gas." Traktory i sel hozmashiny 84, no. 11 (November 15, 2017): 3–9. http://dx.doi.org/10.17816/0321-4443-66316.

Full text
Abstract:
The article presents adjustment characteristics of the diesel engine in terms of the fuel injection advance angle during gas-diesel process operation. Currently the problem of reducing production costs is relevant for many producers. In the agricultural industry a considerable cost item consist of fuel costs for mobile energy vehicle. One way to reduce these costs is using of alternative cheaper fuel types. The natural gas is one of such fuels. The most common type of engine in agriculture is a diesel. In spite of the large number of conducted works to convert diesel engines to natural gas, the question of conversion high-powered low-dimension diesel engines has not been sufficiently investigated. As an object of research D-245.7 (4CHN11/12,5) was chosen. The conversion of diesel engine to gas-diesel process is the purpose of an investigation. One of the stages of the research was conducting bench tests with taking adjustment characteristics of the fuel injection advance angle. As a result of bench tests the parameters of combustion process, characteristics of heat emission, effective indicators of the diesel engine at various values of the fuel injection advance angle during work on diesel and gas-diesel processes are determined. The main following conclusions are: 1) during the diesel engine’s operation on the gas-diesel process an increase of temperature, pressure, the rate of pressure rise in cylinder are observed; 2) the power parameters of diesel engine during the work on gas-diesel process are completely preserved; 3) under such conversion the diesel engine to natural gas one of recommendations is a reduction of the fuel injection advance angle.
APA, Harvard, Vancouver, ISO, and other styles
43

Zhou, P. L., and Y. Q. Qian. "Development of a modified diesel engine cycle." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 212, no. 2 (February 1, 1998): 145–50. http://dx.doi.org/10.1243/0954407981525867.

Full text
Abstract:
This paper presents an investigation of a novel type of diesel engine cycle, an approximate constant pressure cycle. The prototype engine is called the diesel engine with oil cushioned piston (DEOCP). In contrast to conventional engines, the DEOCP has a variable cylinder volume which is controlled automatically by the engine's cylinder pressure. The variable cylinder pressure is achieved by inserting a hydraulic cylinder into the engine's piston rod. The engine cylinder pressure is thus self-controlled and an ideal constant pressure cycle can theoretically be achieved. Computer simulations and engine tests have shown that the DEOCP distinguishes itself with high cycle efficiency, improved low-load performance and good starting ability. A detailed theoretical analysis and test results are presented in the paper, as well as a discussion of existing problems and possible further developments. Development of the diesel engine with oil cushioned piston could break the limit of cycle efficiency of conventional engines, hence opening a new avenue for diesel engine development.
APA, Harvard, Vancouver, ISO, and other styles
44

Khan, T. M. Yunus. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines." Energies 13, no. 17 (August 26, 2020): 4395. http://dx.doi.org/10.3390/en13174395.

Full text
Abstract:
The ever-increasing demand for transport is sustained by internal combustion (IC) engines. The demand for transport energy is large and continuously increasing across the globe. Though there are few alternative options emerging that may eliminate the IC engine, they are in a developing stage, meaning the burden of transportation has to be borne by IC engines until at least the near future. Hence, IC engines continue to be the prime mechanism to sustain transportation in general. However, the scarcity of fossil fuels and its rising prices have forced nations to look for alternate fuels. Biodiesel has been emerged as the replacement of diesel as fuel for diesel engines. The use of biodiesel in the existing diesel engine is not that efficient when it is compared with diesel run engine. Therefore, the biodiesel engine must be suitably improved in its design and developments pertaining to the intake manifold, fuel injection system, combustion chamber and exhaust manifold to get the maximum power output, improved brake thermal efficiency with reduced fuel consumption and exhaust emissions that are compatible with international standards. This paper reviews the efforts put by different researchers in modifying the engine components and systems to develop a diesel engine run on biodiesel for better performance, progressive combustion and improved emissions.
APA, Harvard, Vancouver, ISO, and other styles
45

Loo, Dong Lin, Yew Heng Teoh, Heoy Geok How, Jun Sheng Teh, Liviu Catalin Andrei, Slađana Starčević, and Farooq Sher. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review." Sustainability 13, no. 17 (August 28, 2021): 9677. http://dx.doi.org/10.3390/su13179677.

Full text
Abstract:
Two main aspects of the transportation industry are pollution to the environment and depletion of fossil fuels. In the transportation industry, the pollution to the environment can be reduced with the use of cleaner fuel, such as gas-to-liquid fuel, to reduce the exhaust emissions from engines. However, the depletion of fossil fuels is still significant. Biodiesel is a non-toxic, renewable, and biodegradable fuel that is considered an alternative resource to conventional diesel fuel. Even though biodiesel shows advantages as a renewable source, there are still minor drawbacks while operating in diesel engines. Modern vehicle engines are designed to be powered by conventional diesel fuel or gasoline fuel. In this review, the performance, emissions, combustion, and endurance characteristics of different types of diesel engines with various conditions are assessed with biodiesel and blended fuel as well as the effect of biodiesel on the diesel engines. The results show that biodiesel and blended fuel had fewer emissions of CO, HC, and PM but higher NOx emissions than the diesel-fuelled engine. In the endurance test, biodiesel and blended fuel showed less wear and carbon deposits. A high concentration of wear debris was found inside the lubricating oil while the engine operated with biodiesel and blends. The performance, emissions, and combustion characteristics of biodiesel and its blends showed that it can be used in a diesel engine. However, further research on long-term endurance tests is required to obtain a better understanding of endurance characteristics about engine wear of the diesel engine using biodiesel and its blends.
APA, Harvard, Vancouver, ISO, and other styles
46

Кravets, Andrii, Andrii Yеvtushenko, Andrii Pogrebnyak, Yevhenii Romanovych, and Heorhii Afanasov. "Study on the Prospects of Use the Group D Engine Oil in Locomotive Diesel Engines." International Journal of Engineering & Technology 7, no. 4.3 (September 15, 2018): 47. http://dx.doi.org/10.14419/ijet.v7i4.3.19550.

Full text
Abstract:
It was suggested to use group D engine oil with advanced properties instead of group V and G engine oils, which are used in locomotive diesel engines today, to improve the performance of the Ukrainian locomotive fleet of railways.A series of comparative laboratory studies of these oil groups was conducted to substantiate this suggestion which proved better lubrication and tribological performance of group D engine oil and allowed its performance tests.Tests conducted on diesel 5D49 for mileage of more then 100,000 km have demonstrated the advantages of group D oils, such as more stable viscosity, neutralizing ,washing and other properties. Studies on the four-ball wear test machine proved better anti-wear, anti-scoring and anti-friction properties of group D engine oil, which appear even after the continuous use of oils in locomotive diesels. Decrease in burning loss of engine oil was recorded, resulting in the decrease of oil fuel consumption for group D by 30-60% vs. the group G oil.According to the results of performance tests, group D engine oil has been recommended for the use in 5D49 locomotive diesels and some advice on its future implementation have been provided.
APA, Harvard, Vancouver, ISO, and other styles
47

Lebedevas, Sergejus, Andrius Vaicekauskas, and Pavel Suškov. "PRESUMPTIONS OF EFFECTIVE OPERATION OF DIESEL ENGINES RUNNING ON RME BIODIESEL. RESEARCH ON KINETICS OF COMBUSTION OF RME BIODIESEL." TRANSPORT 22, no. 2 (June 30, 2007): 126–33. http://dx.doi.org/10.3846/16484142.2007.9638112.

Full text
Abstract:
The results of experimental research on kinetics of fuel combustion of diesel engine A41are presented in the publication. The change of characteristics of indicated work (in‐cylinder pressure and temperature, period of induction, heat release and heat release rate) and fuel injection (fuel injection pressure, fuel injection phases) was determined in diesel engine running on RME biodiesel being compared to diesel fuel. The results of researches were used to explain experimentally determined changes of operational and ecological characteristics of diesel engine running on RME biodiesel. In addition, the reliability of diesel engine A41 running on RME biodiesel was evaluated. The presumptions of effective operation of diesel engines running on RME biodiesel were formulated.
APA, Harvard, Vancouver, ISO, and other styles
48

Georgiou, Charalampos, and Ulugbek Azimov. "Analysis and Multi-Parametric Optimisation of the Performance and Exhaust Gas Emissions of a Heavy-Duty Diesel Engine Operating on Miller Cycle." Energies 13, no. 14 (July 20, 2020): 3724. http://dx.doi.org/10.3390/en13143724.

Full text
Abstract:
A major issue nowadays that concerns the pollution of the environment is the emissions emerging from heavy-duty internal combustion engines. Such concern is dictated by the fact that the electrification of heavy-duty transport still remains quite challenging due to limitations associated with mileage, charging speed and payload. Further improvements in the performance and emission characteristics of conventional heavy-duty diesel engines are required. One of a few feasible approaches to simultaneously improve the performance and emission characteristics of a diesel engine is to convert it to operate on Miller cycle. Therefore, this study was divided into two stages, the first stage was the simulation of a heavy-duty turbocharged diesel engine (4-stroke, 6-cylinder and 390 kW) to generate data that will represent the reference model. The second stage was the application of Miller cycle to the conventional diesel engine by changing the degrees of intake valve closure and compressor pressure ratio. Both stages have been implemented through the specialist software which was able to simulate and represent a diesel engine based on performance and emissions data. An objective of this extensive investigation was to develop several models in order to compare their emissions and performances and design a Miller cycle engine with an ultimate goal to optimize diesel engine for improved performance and reduced emissions. This study demonstrates that Miller cycle diesel engines could overtake conventional diesel engines for the reduced exhaust gas emissions at the same or even better level of performance. This study shows that, due to the dependence of engine performance on complex multi-parametric operation, only one model achieved the objectives of the study, more specifically, engine power and torque were increased by 5.5%, whilst nitrogen oxides and particulate matter were decreased by 30.2% and 5.5%, respectively, with negligible change in specific fuel consumption and CO2, as average values over the whole range of engine operating regimes.
APA, Harvard, Vancouver, ISO, and other styles
49

Vo, Tan Chau, Dang Long Tran, Quoc Sy Nguyen, Quang Khai Cao, Thanh Nhan Nguyen, and Minh Hao Le. "A Study on LPG injection based speed regulator for dual fuel diesel engine." Journal of Technical Education Science, no. 72A (October 28, 2022): 1–9. http://dx.doi.org/10.54644/jte.72a.2022.1264.

Full text
Abstract:
Diesel engines are popularly interested due to their great economic efficiency and the high amount of harmful emissions released. The conversion of using multi-fuel engines aims to reduce emissions, and diversifying alternative energy sources to replace diesel fuel, is a potential solution. This paper presents a method to convert the fuel system of the DI-diesel engine type Vikyno RV125 to LPG-diesel dual combustion mode and preliminarily evaluate performance characteristics operating with the LPG injection-based speed regulator. An LPG injector controller circuit was actuated to operate the engine with different load modes up to 5.0kW at corresponding engine speeds. The air intake manifold was modified to calibrate the air-mass flow to effective performance. The experimental result revealed that the changed system could operate in LPG-diesel dual combustion mode. The operating stability of the engine was recognized at speeds up to 1600rpm. A study on engine exhaust emissions will be performed in the next research stage.
APA, Harvard, Vancouver, ISO, and other styles
50

Markov, Vladimir, Vyacheslav Kamaltdinov, Anatoliy Zherdev, Viktor Furman, Bowen Sa, and Vsevolod Neverov. "Study on the Possibility of Improving the Environmental Performance of Diesel Engine Using Carbon Nanotubes as a Petroleum Diesel Fuel Additive." Energies 12, no. 22 (November 15, 2019): 4345. http://dx.doi.org/10.3390/en12224345.

Full text
Abstract:
The relevance of this article is due to the need for improving indicators of exhaust gas toxicity of diesel engines. One of the modern directions of achieving the required environmental performance of diesel engines is the addition of various nanomaterials to petroleum diesel fuel. The aim of the present study was to investigate the possibility of improving the environmental performance of a diesel engine for a generator set using carbon nanotubes as an additive to petroleum diesel fuel in an amount of up to 500 mg/L. Experimental studies were carried out on a D-243 diesel engine operating in a wide range of loads from idle to full load with the addition of 125, 250, and 500 mg/L of carbon nanotubes in the diesel fuel. The mixing of petroleum diesel fuel with nanotubes was done using an ultrasonic unit. The possibility of improving the environmental performance of the studied diesel engine fueled with carbon nanotube-blended petroleum diesel fuel was examined. Results showed that, in the full-load mode of diesel operation, the addition of 500 mg/L of carbon nanotubes to diesel fuel enabled the engine to reduce exhaust smoke from 26.0% to 11.2% on the Hartridge scale.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography