Journal articles on the topic 'Diesel exhaust oxidation catalyst'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Diesel exhaust oxidation catalyst.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nakamura, Maki, Koji Yokota, and Masakuni Ozawa. "Numerical Calculation Optimization for Particulate Matter Trapping and Oxidation of Catalytic Diesel Particulate Filter." Applied Sciences 15, no. 5 (2025): 2356. https://doi.org/10.3390/app15052356.
Full textSchröder, Jörg, Franziska Hartmann, Robert Eschrich, et al. "Accelerated performance and durability test of the exhaust aftertreatment system by contaminated biodiesel." International Journal of Engine Research 18, no. 10 (2017): 1067–76. http://dx.doi.org/10.1177/1468087417700762.
Full textGoto, Yosuke, Naohiro Kato, Shota Kawashima, Yoshiyuki Hayashi, Hideki Goto, and Masao Hori. "Applicable Diesel Oxidation Catalyst for Multi-Diesel Exhaust System." SAE International Journal of Fuels and Lubricants 7, no. 2 (2014): 496–502. http://dx.doi.org/10.4271/2014-01-1511.
Full textRümmele, Florian, Alexander Susdorf, Syed Muhammad Salman Haider, and Robert Szolak. "Light-off Investigation of Oxymethylene Ether (OME) Considering the Presence of the Exhaust Components Heptane, Carbon, and Nitrogen Monoxide." Emission Control Science and Technology 7, no. 4 (2021): 348–58. http://dx.doi.org/10.1007/s40825-021-00202-5.
Full textJabłońska, Magdalena, and Regina Palkovits. "It is no laughing matter: nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts." Catalysis Science & Technology 6, no. 21 (2016): 7671–87. http://dx.doi.org/10.1039/c6cy01126h.
Full textLeonardi, Sabrina Antonela, Eduardo Ernesto Miró, and Viviana Guadalupe Milt. "Activity of Catalytic Ceramic Papers to Remove Soot Particles—A Study of Different Types of Soot." Catalysts 12, no. 8 (2022): 855. http://dx.doi.org/10.3390/catal12080855.
Full textYashnik, S. A. "Catalytic systems for neutralization of exhaust gases from diesel engines: modern challenges and technological solutions to improve a diesel oxidation catalyst." Kataliz v promyshlennosti 22, no. 2 (2022): 25–41. http://dx.doi.org/10.18412/1816-0387-2022-2-25-41.
Full textWu, Gang, Guoda Feng, Yuelin Li, et al. "A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches." Energies 17, no. 3 (2024): 584. http://dx.doi.org/10.3390/en17030584.
Full textSu, Changsheng, Yujun Wang, Ashok Kumar, and Paul McGinn. "Simulating Real World Soot-Catalyst Contact Conditions for Lab-Scale Catalytic Soot Oxidation Studies." Catalysts 8, no. 6 (2018): 247. http://dx.doi.org/10.3390/catal8060247.
Full textPromhuad, Punya, and Boonlue Sawatmongkhon. "Soot Oxidation in Diesel Exhaust on Silver Catalyst Supported by Alumina, Titanium and Zirconium." E3S Web of Conferences 302 (2021): 01008. http://dx.doi.org/10.1051/e3sconf/202130201008.
Full textTwigg, Martyn V. "Controlling automotive exhaust emissions: successes and underlying science." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1829 (2005): 1013–33. http://dx.doi.org/10.1098/rsta.2005.1547.
Full textJirawongnuson, Sirichai, Worathep Wachirapan, Tul Suthiprasert, and Ekathai Wirojsakunchai. "A Parametric Study of Diesel Oxidation Catalyst Performance on CO Reduction in Diesel Dual Fuel Engine Exhaust." Key Engineering Materials 656-657 (July 2015): 538–43. http://dx.doi.org/10.4028/www.scientific.net/kem.656-657.538.
Full textPromhuad, Punya, Boonlue Sawatmongkhon, Nuwong Chollacoop, Kampanart Theinnoi, Thawatchai Wongchang, and Ekachai Juntasaro. "Activity for Diesel Particulate Matter Oxidation of Silver Supported on Al2O3, TiO2, ZnO, and CeO2: The Effect of Oxygen Concentration." E3S Web of Conferences 428 (2023): 01001. http://dx.doi.org/10.1051/e3sconf/202342801001.
Full textPanchishnyi, V. I., and I. Yu Vorobiev. "Role of oxidation catalysis in after-treatment of exhaust gases of diesel engines." Trudy NAMI, no. 2 (July 12, 2023): 18–30. http://dx.doi.org/10.51187/0135-3152-2023-2-18-30.
Full textGao, Ying, and Hongqi Liu. "Control-oriented modeling of diesel oxidation catalyst." E3S Web of Conferences 268 (2021): 01027. http://dx.doi.org/10.1051/e3sconf/202126801027.
Full textQuiles-Díaz, Susana, Javier Giménez-Mañogil, and Avelina García-García. "Catalytic performance of CuO/Ce0.8Zr0.2O2 loaded onto SiC-DPF in NOx-assisted combustion of diesel soot." RSC Advances 5, no. 22 (2015): 17018–29. http://dx.doi.org/10.1039/c4ra15595e.
Full textSerrano, José R., Francisco J. Arnau, Jaime Martín, and Ángel Auñón. "Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine." Energies 13, no. 17 (2020): 4561. http://dx.doi.org/10.3390/en13174561.
Full textM., Nawdali* I. Zarguili J. Toyir H. Zaitan S. Tahiri H. Ahlafi. "TECHNOLOGY PROGRESSES IN DIESEL EXHAUST PARTICLES CONTROL." Global Journal of Engineering Science and Research Management 3, no. 9 (2016): 54–68. https://doi.org/10.5281/zenodo.159027.
Full textAndrych-Zalewska, Monika, Jerzy Merkisz, and Jacek Pielecha. "The influence of the heating time of a catalyst-covered glow plug on the exhaust emissions from a diesel engine." Combustion Engines 184, no. 1 (2021): 52–56. http://dx.doi.org/10.19206/ce-134738.
Full textSun, Ke, Gecheng Zhang, Zhengyong Wang, et al. "Thermal Management of Diesel Engine Aftertreatment System Based on Ultra-Low Nitrogen Oxides Emission." Applied Sciences 14, no. 1 (2023): 237. http://dx.doi.org/10.3390/app14010237.
Full textGuardiola, Carlos, Benjamin Pla, Pau Bares, and Javier Mora. "An on-board method to estimate the light-off temperature of diesel oxidation catalysts." International Journal of Engine Research 21, no. 8 (2018): 1480–92. http://dx.doi.org/10.1177/1468087418817965.
Full textFino, Debora, Nunzio Russo, Emanuele Cauda, et al. "Novel Approches in Oxidative Catalysis for Diesel Particulate Abatement." Advances in Science and Technology 45 (October 2006): 2083–88. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2083.
Full textLi, T., and H. Ogawa. "Regulated emissions and speciated hydrocarbons from smokeless low-temperature combustion diesel engines with ultra-high exhaust gas recirculation and exhaust oxidation catalyst." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, no. 5 (2009): 673–83. http://dx.doi.org/10.1243/09544070jauto1047.
Full textLee, Kyoungbok, Jongin Lee, Sangho Lee, Kwangchul Oh, and Sungwook Jang. "Fuel Consumption and Emission Reduction for Non-Road Diesel Engines with Electrically Heated Catalysts." Catalysts 13, no. 6 (2023): 950. http://dx.doi.org/10.3390/catal13060950.
Full textJang, Jaehwan, Seongyool Ahn, Sangkyung Na, Jinhee Koo, Heehwan Roh, and Gyungmin Choi. "Effect of a Plasma Burner on NOx Reduction and Catalyst Regeneration in a Marine SCR System." Energies 15, no. 12 (2022): 4306. http://dx.doi.org/10.3390/en15124306.
Full textWang, Ning, Yao Sun, Yunfeng Hu, Jinghua Zhao, and Xun Gong. "Design of Diesel Oxidation Catalyst Temperature Control System Based on Fuzzy Adaptive PID." Journal of Physics: Conference Series 2203, no. 1 (2022): 012041. http://dx.doi.org/10.1088/1742-6596/2203/1/012041.
Full textTorregrosa-Rivero, Moreno-Marcos, Albaladejo-Fuentes, Sánchez-Adsuar, and Illán-Gómez. "BaFe1-xCuxO3 Perovskites as Active Phase for Diesel (DPF) and Gasoline Particle Filters (GPF)." Nanomaterials 9, no. 11 (2019): 1551. http://dx.doi.org/10.3390/nano9111551.
Full textYang, Zhengzheng, Jun Li, Hailong Zhang, Yi Yang, Maochu Gong, and Yaoqiang Chen. "Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO2–YOxdiesel oxidation catalyst under simulative diesel exhaust conditions." Catalysis Science & Technology 5, no. 4 (2015): 2358–65. http://dx.doi.org/10.1039/c4cy01384k.
Full textSuthiprasert, Tul, Tanes Limpurimongkol, Sirichai Jirawongnuson, Tanet Aroonsrisopon, and Ekathai Wirojsakunchai. "Optimizing CO Reductions in a Diesel Oxidation Catalyst under Diesel Dual Fuel Exhaust Conditions." Engineering Journal 21, no. 5 (2017): 93–103. http://dx.doi.org/10.4186/ej.2017.21.5.93.
Full textThangapandian, P., S. Paulsingarayar, R. Chandraprakash, S. Seenivasan, I. Vimal Kannan, and S. A. Siddeshwar. "Development and experimental studies of a light vehicle diesel after treatment system with DOC, DPF and urea SCR." Journal of Physics: Conference Series 2925, no. 1 (2024): 012008. https://doi.org/10.1088/1742-6596/2925/1/012008.
Full textFayad, Mohammed Ali, Azher Mouhsen Abed, Hussain Ali Hussain, et al. "Influence of Sophisticated Post-Injection Strategy and Oxygenated Fuel Blends on PM Characteristics and Improvement in Soot Oxidation Reactivity in Diesel Engine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 125, no. 2 (2024): 93–105. https://doi.org/10.37934/arfmts.125.2.93105.
Full textChen, Haoming, Tianle Li, Zhiming Xu, Wenju Wang, and Haihou Wang. "Oxidation of soot promoted by Fe-based spinel catalysts." Materials Research Express 9, no. 1 (2022): 015502. http://dx.doi.org/10.1088/2053-1591/ac3f5d.
Full textSUCHECKI, Andrzej, Krzysztof ADAMASZEK, and Mariusz WISŁA. "Corrosion resistance of valve steel in diesel exhaust gas containing 5, 10 and 20 % of FAME." Combustion Engines 152, no. 1 (2013): 51–55. http://dx.doi.org/10.19206/ce-117012.
Full textMaksimov, I. M., G. V. Mavrin, A. V. Gordeev, and A. Yu Pogodin. "Active regeneration particulate filter operating cycle theoretical justification." Trudy NAMI, no. 1 (March 28, 2024): 31–44. http://dx.doi.org/10.51187/0135-3152-2024-1-31-44.
Full textÁlvarez-Docio, Carmen M., Raquel Portela, Julián J. Reinosa, Fernando Rubio-Marcos, Laura Pascual, and José F. Fernández. "Performance and Stability of Wet-Milled CoAl2O4, Ni/CoAl2O4, and Pt,Ni/CoAl2O4 for Soot Combustion." Catalysts 10, no. 4 (2020): 406. http://dx.doi.org/10.3390/catal10040406.
Full textKatare, Santhoji R., and Paul M. Laing. "Hydrogen in Diesel Exhaust: Effect on Diesel Oxidation Catalyst Flow Reactor Experiments and Model Predictions." SAE International Journal of Fuels and Lubricants 2, no. 1 (2009): 605–11. http://dx.doi.org/10.4271/2009-01-1268.
Full textK. Saikrishna and Dr K. Kishor. "Reduction of Emissions in a Single Cylinder Diesel Engine using Blends of Diesel & Cotton Seed Oil with Unconventional Catalytic Converter." International Journal of Emerging Science and Engineering 12, no. 7 (2024): 13–19. http://dx.doi.org/10.35940/ijese.f4502.12070624.
Full textK., Saikrishna. "Reduction of Emissions in a Single Cylinder Diesel Engine using Blends of Diesel & Cotton Seed Oil with Unconventional Catalytic Converter." International Journal of Emerging Science and Engineering (IJESE) 12, no. 7 (2024): 13–19. https://doi.org/10.35940/ijese.F4502.12070624.
Full textSerrano, José Ramón, Pedro Piqueras, Joaquín de la Morena, and Enrique José Sanchis. "Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration." Applied Sciences 9, no. 24 (2019): 5384. http://dx.doi.org/10.3390/app9245384.
Full textKorhonen, Kimmo, Thomas Bjerring Kristensen, John Falk, et al. "Particle emissions from a modern heavy-duty diesel engine as ice nuclei in immersion freezing mode: a laboratory study on fossil and renewable fuels." Atmospheric Chemistry and Physics 22, no. 3 (2022): 1615–31. http://dx.doi.org/10.5194/acp-22-1615-2022.
Full textAKIYAMA, Jiro, Hideyuki TSUNEMOTO, Hiromi ISHITANI, Murari M. ROY, Toshitaka MINAMI, and Masahiro NOGUCHI. "420 Influence of Oxidation Catalyst on Exhaust Odor in DI Diesel Engines." Proceedings of Conference of Hokkaido Branch 2000.40 (2000): 176–77. http://dx.doi.org/10.1299/jsmehokkaido.2000.40.176.
Full textSampara, Chaitanya S., Edward J. Bissett, and Matthew Chmielewski. "Global Kinetics for a Commercial Diesel Oxidation Catalyst with Two Exhaust Hydrocarbons." Industrial & Engineering Chemistry Research 47, no. 2 (2008): 311–22. http://dx.doi.org/10.1021/ie070813x.
Full textMAYER, Andreas, Jan CZERWINSKI, and Paul ZELENKA. "Conditions of NO2-production in catalyzed DPF-systems." Combustion Engines 150, no. 3 (2012): 3–16. http://dx.doi.org/10.19206/ce-117026.
Full textLiu, Guanlin, Weiqiang Liu, Yibin He, Jinke Gong, and Qiong Li. "Research on Influence of Exhaust Characteristics and Control Strategy to DOC-Assisted Active Regeneration of DPF." Processes 9, no. 8 (2021): 1403. http://dx.doi.org/10.3390/pr9081403.
Full textLapuerta, Magín, Ángel Ramos, David Fernández-Rodríguez, and Inmaculada González-García. "High-pressure versus low-pressure exhaust gas recirculation in a Euro 6 diesel engine with lean-NOx trap: Effectiveness to reduce NOx emissions." International Journal of Engine Research 20, no. 1 (2018): 155–63. http://dx.doi.org/10.1177/1468087418817447.
Full textDittrich, S., S. Kohsakowski, B. Wittek, et al. "Increasing the Size-Selectivity in Laser-Based g/h Liquid Flow Synthesis of Pt and PtPd Nanoparticles for CO and NO Oxidation in Industrial Automotive Exhaust Gas Treatment Benchmarking." Nanomaterials 10, no. 8 (2020): 1582. http://dx.doi.org/10.3390/nano10081582.
Full textRizzotto, Valentina, Stefan Bajić, Dario Formenti, et al. "Comparison of Industrial and Lab-Scale Ion Exchange for the DeNOx-SCR Performance of Cu Chabazites: A Case Study." Catalysts 12, no. 8 (2022): 880. http://dx.doi.org/10.3390/catal12080880.
Full textRanji-Burachaloo, H., S. Masoomi-Godarzi, A. A. Khodadadi, M. Vesali-Naseh, and Y. Mortazavi. "Soot oxidation in a corona plasma-catalytic reactor." International Journal of Modern Physics: Conference Series 32 (January 2014): 1460348. http://dx.doi.org/10.1142/s2010194514603482.
Full textYAMANE, Koji, and Yuzuru SHIMAMOTO. "Reduction of Exhaust Emissions from Biodiesel Fueled DI Diesel Engines by Oxidation Catalyst." Proceedings of the JSME annual meeting 2002.4 (2002): 67–68. http://dx.doi.org/10.1299/jsmemecjo.2002.4.0_67.
Full textLabhsetwar, Nitin K., M. Dhakad, S. S. Rayalu, et al. "Thermally stable metal ruthenate based soot oxidation catalyst for diesel exhaust emission control." Topics in Catalysis 42-43, no. 1-4 (2007): 299–302. http://dx.doi.org/10.1007/s11244-007-0195-x.
Full text