Academic literature on the topic 'Diferenciální rovnice se zpožděním'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diferenciální rovnice se zpožděním.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Diferenciální rovnice se zpožděním"

1

Piddubna, Ganna Konstantinivna. "Lineární maticové diferenciální rovnice se zpožděním." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233626.

Full text
Abstract:
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech.
APA, Harvard, Vancouver, ISO, and other styles
2

Dokyi, Martha. "Diferenciální rovnice se zpožděním v dynamických systémech." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445464.

Full text
Abstract:
Tato práce je přehledem zpožděných diferenciálních rovnic v dynamických systémech. Počínaje obecným přehledem zpožděných diferenciálních rovnic představujeme koncept zpožděných diferenciálů a použití jeho modelů, od biologie a populační dynamiky po fyziku a inženýrství. Poskytneme také přehled Dynamické systémy a diferenciální rovnice zpoždění v dynamických systémech. Oblastí pro modelování s rovnicemi zpožďovacích diferenciálů je Epidemiologie. Důraz je kladen na vývoj epidemiologického modelu Susceptible-Infected-Removed (SIR) bez časového zpoždění. Analyzujeme naše dva modely v rovnováze a lokální stabilitě pomocí předpokládaných dat COVID -19. Výsledky by byly porovnány mezi modelem bez zpoždění a modelem se zpožděním.
APA, Harvard, Vancouver, ISO, and other styles
3

Obrátil, Štěpán. "Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400513.

Full text
Abstract:
The thesis deals with numerical analysis of delay differential equations. Particularly, the -method is applied to the pantograph equation considering equidistant and quasi-geometric mesh. Qualitative properties of the numerical methods are demonstrated on several special cases of the pantograph equation.
APA, Harvard, Vancouver, ISO, and other styles
4

Béreš, Lukáš. "Matematické modelování pomocí diferenciálních rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318707.

Full text
Abstract:
Diplomová práce je zaměřena na problematiku nelineárních diferenciálních rovnic. Obsahuje věty důležité k určení chování nelineárního systému pouze za pomoci zlinearizovaného systému, což je následně ukázáno na rovnici matematického kyvadla. Dále se práce zabývá problematikou diferenciálních rovnic se zpoždéním. Pomocí těchto rovnic je možné přesněji popsat některé reálné systémy, především systémy, ve kterých se vyskytují časové prodlevy. Zpoždění ale komplikuje řešitelnost těchto rovnic, což je ukázáno na zjednodušené rovnici portálového jeřábu. Následně je zkoumána oscilace lineární rovnice s nekonstantním zpožděním a nalezení podmínek pro koeficienty rovnice zaručující oscilačnost každého řešení.
APA, Harvard, Vancouver, ISO, and other styles
5

Jánský, Jiří. "Delay Difference Equations and Their Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233892.

Full text
Abstract:
Disertační práce se zabývá vyšetřováním kvalitativních vlastností diferenčních rovnic se zpožděním, které vznikly diskretizací příslušných diferenciálních rovnic se zpožděním pomocí tzv. $\Theta$-metody. Cílem je analyzovat asymptotické vlastnosti numerického řešení těchto rovnic a formulovat jeho horní odhady. Studována je rovněž stabilita vybraných numerických diskretizací. Práce obsahuje také srovnání s dosud známými výsledky a několik příkladů ilustrujících hlavní dosažené výsledky.
APA, Harvard, Vancouver, ISO, and other styles
6

Baštincová, Alena. "Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233556.

Full text
Abstract:
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského.
APA, Harvard, Vancouver, ISO, and other styles
7

Dvořáková, Stanislava. "The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233952.

Full text
Abstract:
Disertační práce formuluje asymptotické odhady řešení tzv. sublineárních a superlineárních diferenciálních rovnic se zpožděním. V těchto odhadech vystupuje řešení pomocných funkcionálních rovnic a nerovností. Dále práce pojednává o kvalitativních vlastnostech diferenčních rovnic se zpožděním, které vznikly diskretizací studovaných diferenciálních rovnic. Pozornost je věnována souvislostem asympotického chování řešení rovnic ve spojitém a diskrétním tvaru, a to v obecném i v konkrétních případech. Studována je rovněž stabilita numerické diskretizace vycházející z $\theta$-metody. Práce obsahuje několik příkladů ilustrujících dosažené výsledky.
APA, Harvard, Vancouver, ISO, and other styles
8

Dóczy, Aneta. "Hra o trhy." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2017. http://www.nusl.cz/ntk/nusl-318282.

Full text
Abstract:
This diploma thesis deals with conict economic situations based on game theory. In the beginning, basic models of conict situations and current popular software tools are dened not only for the general support of student education or for science, but also for solving economic problems in game theory. Based on this analysis, the conicting situation of two competing rms is being solved. Gradually, work goes deeper into areas of delay dierential equations that better show the behavior of two players on the market. Subsequently, these delayed dierential equations are projected into the Cournot model, for which a critical value is identied that switches the stability of two rms on the market due to the delayed realization of their outputs.
APA, Harvard, Vancouver, ISO, and other styles
9

Dražková, Jana. "Stability of Neutral Delay Differential Equations and Their Discretizations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234204.

Full text
Abstract:
Disertační práce se zabývá asymptotickou stabilitou zpožděných diferenciálních rovnic a jejich diskretizací. V práci jsou uvažovány lineární zpožděné diferenciální rovnice s~konstantním i neohraničeným zpožděním. Jsou odvozeny nutné a postačující podmínky popisující oblast asymptotické stability jak pro exaktní, tak i diskretizovanou lineární neutrální diferenciální rovnici s konstantním zpožděním. Pomocí těchto podmínek jsou porovnány oblasti asymptotické stability odpovídajících exaktních a diskretizovaných rovnic a vyvozeny některé vlastnosti diskrétních oblastí stability vzhledem k měnícímu se kroku použité diskretizace. Dále se zabýváme lineární zpožděnou diferenciální rovnicí s neohraničeným zpožděním. Je uveden popis jejích exaktních a diskrétních oblastí asymptotické stability spolu s asymptotickým odhadem jejich řešení. V závěru uvažujeme lineární diferenciální rovnici s více neohraničenými zpožděními.
APA, Harvard, Vancouver, ISO, and other styles
10

Vážanová, Gabriela. "Existence a vlastnosti globálních řešení funkcionálních diferenciálních rovnic smíšeného typu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-433560.

Full text
Abstract:
Dizertační práce se věnuje funkcionálním diferenciálním rovnicím smíšeného typu. Poskytuje kritéria pro existenci globálních a semi-globálních řešení diferenciálních systémů smíšeného typu. Metody použité v teto práci spočívají v sestavení vhodných operátorů pro diferenciální rovnice a prokázání existence jejich pevných bodů. Tyto pevné body jsou potom použity ke konstrukci řešení rovnic s předcházením a zpožděním. V důkazech tvrzení jsou použity monotónní iterační metoda a Schauderovy-Tychonovovy věty o existenci pevného bodu. V obou případech jsou uvedeny také odhady řešení. Pokud je použita iterační metoda, lze tyto odhady zlepšit iterováním. Kromě toho jsou odvozena kritéria pro lineární rovnice a systémy a je uvedena řada přikladů. Dosažené výsledky lze aplikovat také pro obyčejné diferenciální rovnice nebo diferenciální rovnice se zpožděním či s předcházením argumentu.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Diferenciální rovnice se zpožděním"

1

Equadiff (10. 2001 Praha, Česko). Equadiff 10: Czechoslovak international conference on differential equations and their applications, Prague, August 27-31, 2001 : papers. Brno: Masaryk University, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography