To see the other types of publications on this topic, follow the link: Differential equations, Parabolic.

Dissertations / Theses on the topic 'Differential equations, Parabolic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Differential equations, Parabolic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Yung, Tamara. "Traffic Modelling Using Parabolic Differential Equations." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102745.

Full text
Abstract:
The need of a working infrastructure in a city also requires an understanding of how the traffic flows. It is known that increasing number of drivers prolong the travel time and has an environmental effect in larger cities. It also makes it more difficult for commuters and delivery firms to estimate their travel time. To estimate the traffic flow the traffic department can arrange cameras along popular roads and redirect the traffic, but this is a costly method and difficult to implement. Another approach is to apply theories from physics wave theory and mathematics to model the traffic flow;
APA, Harvard, Vancouver, ISO, and other styles
2

Hofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.

Full text
Abstract:
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyperbolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the s
APA, Harvard, Vancouver, ISO, and other styles
3

Baysal, Arzu. "Inverse Problems For Parabolic Equations." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605623/index.pdf.

Full text
Abstract:
In this thesis, we study inverse problems of restoration of the unknown function in a boundary condition, where on the boundary of the domain there is a convective heat exchange with the environment. Besides the temperature of the domain, we seek either the temperature of the environment in Problem I and II, or the coefficient of external boundary heat emission in Problem III and IV. An additional information is given, which is the overdetermination condition, either on the boundary of the domain (in Problem III and IV) or on a time interval (in Problem I and II). If solution of inverse proble
APA, Harvard, Vancouver, ISO, and other styles
4

Keras, Sigitas. "Numerical methods for parabolic partial differential equations." Thesis, University of Cambridge, 1997. https://www.repository.cam.ac.uk/handle/1810/251611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ascencio, Pedro. "Adaptive observer design for parabolic partial differential equations." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49454.

Full text
Abstract:
This thesis addresses the observer design problem, for a class of linear one-dimensional parabolic Partial Differential Equations, considering the simultaneous estimation of states and parameters from boundary measurements. The design is based on the Backstepping methodology for Partial Differential Equations and extends its central idea, the Volterra transformation, to compensate for the parameters uncertainties. The design steps seek to reject time-varying parameter uncertainties setting forth a type of differential boundary value problems (Kernel-PDE/ODEs) to accomplish its objective, the s
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, J. F. "Scaling and singularities in higher-order nonlinear differential equations." Thesis, University of Bath, 2003. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsang, Siu Chung. "Preconditioners for linear parabolic optimal control problems." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/464.

Full text
Abstract:
In this thesis, we consider the computational methods for linear parabolic optimal control problems. We wish to minimize the cost functional while fulfilling the parabolic partial differential equations (PDE) constraint. This type of problems arises in many fields of science and engineering. Since solving such parabolic PDE optimal control problems often lead to a demanding computational cost and time, an effective algorithm is desired. In this research, we focus on the distributed control problems. Three types of cost functional are considered: Target States problems, Tracking problems, and A
APA, Harvard, Vancouver, ISO, and other styles
8

Rivera, Noriega Jorge. "Some remarks on certain parabolic differential operators over non-cylindrical domains /." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3025649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hammer, Patricia W. "Parameter identification in parabolic partial differential equations using quasilinearization." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/37226.

Full text
Abstract:
We develop a technique for identifying unknown coefficients in parabolic partial differential equations. The identification scheme is based on quasilinearization and is applied to both linear and nonlinear equations where the unknown coefficients may be spatially varying. Our investigation includes derivation, convergence, and numerical testing of the quasilinearization based identification scheme<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Prinja, Gaurav Kant. "Adaptive solvers for elliptic and parabolic partial differential equations." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/adaptive-solvers-for-elliptic-and-parabolic-partial-differential-equations(f0894eb2-9e06-41ff-82fd-a7bde36c816c).html.

Full text
Abstract:
In this thesis our primary interest is in developing adaptive solution methods for parabolic and elliptic partial differential equations. The convection-diffusion equation is used as a representative test problem. Investigations are made into adaptive temporal solvers implementing only a few changes to existing software. This includes a comparison of commercial code against some more academic releases. A novel way to select step sizes for an adaptive BDF2 code is introduced. A chapter is included introducing some functional analysis that is required to understand aspects of the finite element
APA, Harvard, Vancouver, ISO, and other styles
11

Marlow, Robert. "Moving mesh methods for solving parabolic partial differential equations." Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/1528/.

Full text
Abstract:
In this thesis, we introduce and assess a new adaptive method for solving non-linear parabolic partial differential equations with fixed or moving boundaries, using a moving mesh with continuous finite elements. The evolution of the mesh within the interior of the spatial domain is based upon conserving the distribution of a chosen monitor function across the domain throughout time, where the initial distribution is based upon the given initial data. For the moving boundary cases, the mesh movement at the boundary is governed by a second monitor function. The method is applied with different m
APA, Harvard, Vancouver, ISO, and other styles
12

Mavinga, Nsoki. "Nonlinear second order parabolic and elliptic equations with nonlinear boundary conditions." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/mavinga.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008.<br>Title from PDF title page (viewed Sept. 23, 2009). Additional advisors: Inmaculada Aban, Alexander Frenkel, Wenzhang Huang, Yanni Zeng. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
13

Sahimi, Mohd S. "Numerical methods for solving hyperbolic and parabolic partial differential equations." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/12077.

Full text
Abstract:
The main object of this thesis is a study of the numerical 'solution of hyperbolic and parabolic partial differential equations. The introductory chapter deals with a general description and classification of partial differential equations. Some useful mathematical preliminaries and properties of matrices are outlined. Chapters Two and Three are concerned with a general survey of current numerical methods to solve these equations. By employing finite differences, the differential system is replaced by a large matrix system. Important concepts such as convergence, consistency, stability and acc
APA, Harvard, Vancouver, ISO, and other styles
14

Taj, Malik Shahadat Ali. "Higher order parallel splitting methods for parabolic partial differential equations." Thesis, Brunel University, 1995. http://bura.brunel.ac.uk/handle/2438/5780.

Full text
Abstract:
The thesis develops two families of numerical methods, based upon new rational approximations to the matrix exponential function, for solving second-order parabolic partial differential equations. These methods are L-stable, third- and fourth-order accurate in space and time, and do not require the use of complex arithmetic. In these methods second-order spatial derivatives are approximated by new difference approximations. Then parallel algorithms are developed and tested on one-, two- and three-dimensional heat equations, with constant coefficients, subject to homogeneous boundary conditions
APA, Harvard, Vancouver, ISO, and other styles
15

Blake, Kenneth William. "Moving mesh methods for non-linear parabolic partial differential equations." Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Teichman, Jeremy Alan 1975. "Bounding of linear output functionals of parabolic partial differential equations." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Lan. "Parameter identification in linear and nonlinear parabolic partial differential equations." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/37762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Leahy, James-Michael. "On parabolic stochastic integro-differential equations : existence, regularity and numerics." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10569.

Full text
Abstract:
In this thesis, we study the existence, uniqueness, and regularity of systems of degenerate linear stochastic integro-differential equations (SIDEs) of parabolic type with adapted coefficients in the whole space. We also investigate explicit and implicit finite difference schemes for SIDEs with non-degenerate diffusion. The class of equations we consider arise in non-linear filtering of semimartingales with jumps. In Chapter 2, we derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by Lévy driven stochastic differential equations (SDEs) with adap
APA, Harvard, Vancouver, ISO, and other styles
19

Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Agueh, Martial Marie-Paul. "Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yolcu, Türkay. "Parabolic systems and an underlying Lagrangian." Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29760.

Full text
Abstract:
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2010.<br>Committee Chair: Gangbo, Wilfrid; Committee Member: Chow, Shui-Nee; Committee Member: Harrell, Evans; Committee Member: Swiech, Andrzej; Committee Member: Yezzi, Anthony Joseph. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
22

Jürgens, Markus. "A semigroup approach to the numerical solution of parabolic differential equations." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976761580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ngounda, Edgard. "Numerical Laplace transformation methods for integrating linear parabolic partial differential equations." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2735.

Full text
Abstract:
Thesis (MSc (Applied Mathematics))--University of Stellenbosch, 2009.<br>ENGLISH ABSTRACT: In recent years the Laplace inversion method has emerged as a viable alternative method for the numerical solution of PDEs. Effective methods for the numerical inversion are based on the approximation of the Bromwich integral. In this thesis, a numerical study is undertaken to compare the efficiency of the Laplace inversion method with more conventional time integrator methods. Particularly, we consider the method-of-lines based on MATLAB’s ODE15s and the Crank-Nicolson method. Our studies include
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Yaxi. "Numerical solutions of nonlinear parabolic problems using combined-block iterative methods /." Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/zhaoy/yaxizhao.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jakubowski, Volker G. "Nonlinear elliptic parabolic integro differential equations with L-data existence, uniqueness, asymptotic /." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966250141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Smyshlyaev, Andrey S. "Explicit and parameter-adaptive boundary control laws for parabolic partial differential equations." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3235014.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2006.<br>Title from first page of PDF file (viewed December 6, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 181-186).
APA, Harvard, Vancouver, ISO, and other styles
27

Utz, Tilman [Verfasser]. "Control of Parabolic Partial Differential Equations Based on Semi-Discretizations / Tilman Utz." Aachen : Shaker, 2012. http://d-nb.info/1069046574/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Stanciulescu, Vasile Nicolae. "Selected topics in Dirichlet problems for linear parabolic stochastic partial differential equations." Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/8271.

Full text
Abstract:
This thesis is devoted to the study of Dirichlet problems for some linear parabolic SPDEs. Our aim in it is twofold. First, we consider SPDEs with deterministic coefficients which are smooth up to some order of regularity. We establish some theoretical results in terms of existence, uniqueness and regularity of the classical solution to the considered problem. Then, we provide the probabilistic representations (the averaging-over-characteristic formulas of its solution. We, thereafter, construct numerical methods for it. The methods are based on the averaging-over-characteristic formula and th
APA, Harvard, Vancouver, ISO, and other styles
29

Grepl, Martin A. (Martin Alexander) 1974. "Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32387.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.<br>Includes bibliographical references (p. 243-251).<br>Modern engineering problems often require accurate, reliable, and efficient evaluation of quantities of interest, evaluation of which demands the solution of a partial differential equation. We present in this thesis a technique for the prediction of outputs of interest of parabolic partial differential equations. The essential ingredients are: (i) rapidly convergent reduced-basis approximations - Galerkin projection onto a space WN spanned by s
APA, Harvard, Vancouver, ISO, and other styles
30

Kadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.

Full text
Abstract:
This thesis is concerned with the Numerical Solution of Partial Differential Equations. Initially some definitions and mathematical background are given, accompanied by the basic theories of solving linear systems and other related topics. Also, an introduction to splines, particularly cubic splines and their identities are presented. The methods used to solve parabolic partial differential equations are surveyed and classified into explicit or implicit (direct and iterative) methods. We concentrate on the Alternating Direction Implicit (ADI), the Group Explicit (GE) and the Crank-Nicolson (C-
APA, Harvard, Vancouver, ISO, and other styles
31

Düll, Wolf-Patrick. "Theorie einer pseudoparabolischen partiellen Differentialgleichung zur Modelliurung der Lösemittelaufnahme in Polymerfeststoffen." Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62771307.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chen, Mingxiang. "Structural stability of periodic systems." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/29341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kuhn, Zuzana. "Ranges of vector measures and valuations." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/30875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yolcu, Türkay. "Parabolic systems and an underlying Lagrangian." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29760.

Full text
Abstract:
In this thesis, we extend De Giorgi's interpolation method to a class of parabolic equations which are not gradient flows but possess an entropy functional and an underlying Lagrangian. The new fact in the study is that not only the Lagrangian may depend on spatial variables, but also it does not induce a metric. Assuming the initial condition is a density function, not necessarily smooth, but solely of bounded first moments and finite "entropy", we use a variational scheme to discretize the equation in time and construct approximate solutions. Moreover, De Giorgi's interpolation method is rev
APA, Harvard, Vancouver, ISO, and other styles
35

BACCOLI, ANTONELLO. "Boundary control and observation of coupled parabolic PDEs." Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266880.

Full text
Abstract:
Reaction-diffusion equations are parabolic Partial Differential Equations (PDEs) which often occur in practice, e.g., to model the concentration of one or more substances, distributed in space, under the in uence of different phenomena such as local chemical reactions, in which the substances are transformed into each other, and diffusion, which causes the substances to spread out over a surface in space. Certainly, reaction-diffusion PDEs are not confined to chemical applications but they also describe dynamical processes of non-chemical nature, with examples being found in thermodynam
APA, Harvard, Vancouver, ISO, and other styles
36

Hall, Eric Joseph. "Accelerated numerical schemes for deterministic and stochastic partial differential equations of parabolic type." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8038.

Full text
Abstract:
First we consider implicit finite difference schemes on uniform grids in time and space for second order linear stochastic partial differential equations of parabolic type. Under sufficient regularity conditions, we prove the existence of an appropriate asymptotic expansion in powers of the the spatial mesh and hence we apply Richardson's method to accelerate the convergence with respect to the spatial approximation to an arbitrarily high order. Then we extend these results to equations where the parabolicity condition is allowed to degenerate. Finally, we consider implicit finite difference a
APA, Harvard, Vancouver, ISO, and other styles
37

Johnsen, Pernilla. "Homogenization of Partial Differential Equations using Multiscale Convergence Methods." Licentiate thesis, Mittuniversitetet, Institutionen för matematik och ämnesdidaktik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42036.

Full text
Abstract:
The focus of this thesis is the theory of periodic homogenization of partial differential equations and some applicable concepts of convergence. More precisely, we study parabolic problems exhibiting both spatial and temporal microscopic oscillations and a vanishing volumetric heat capacity type of coefficient. We also consider a hyperbolic-parabolic problem with two spatial microscopic scales. The tools used are evolution settings of multiscale and very weak multiscale convergence, which are extensions of, or closely related to, the classical method of two-scale convergence. The novelty of th
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Chun Yang. "A second order ADI method for 2D parabolic equations with mixed derivative." Thesis, University of Macau, 2012. http://umaclib3.umac.mo/record=b2592940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Portal, Pierre. "Harmonic analysis of banach space valued functions in the study of parabolic evolution equations /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3137737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Xince. "Quasilinear PDEs and forward-backward stochastic differential equations." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17383.

Full text
Abstract:
In this thesis, first we study the unique classical solution of quasi-linear second order parabolic partial differential equations (PDEs). For this, we study the existence and uniqueness of the $L^2_{\rho}( \mathbb{R}^{d}; \mathbb{R}^{d}) \otimes L^2_{\rho}( \mathbb{R}^{d}; \mathbb{R}^{k})\otimes L^2_{\rho}( \mathbb{R}^{d}; \mathbb{R}^{k\times d})$ valued solution of forward backward stochastic differential equations (FBSDEs) with finite horizon, the regularity property of the solution of FBSDEs and the connection between the solution of FBSDEs and the solution of quasi-linear parabolic PDEs.
APA, Harvard, Vancouver, ISO, and other styles
41

Fetter, Nathansky Alfredo. "Fehlerabschätzungen für Finite-Elemente Approximationen von parabolischen Variationsungleichungen." Bonn : [s.n.], 1986. http://catalog.hathitrust.org/api/volumes/oclc/17488340.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wilderotter, Olga. "Adaptive finite elemente Methode für singuläre parabolische Probleme." Bonn : [s.n.], 2001. http://catalog.hathitrust.org/api/volumes/oclc/48077903.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Flaig, Thomas G. [Verfasser]. "Discretization strategies for optimal control problems with parabolic partial differential equations / Thomas G. Flaig." München : Verlag Dr. Hut, 2013. http://d-nb.info/103729176X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tang, Shaowu [Verfasser]. "Multiscale and geometric methods for linear elliptic and parabolic partial differential equations / Shaowu Tang." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2008. http://d-nb.info/1034787411/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Vieira, Nelson Felipe Loureiro. "Theory of the parabolic Dirac operators and its applications to non-linear differential equations." Doctoral thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Weian, Yin Yang, and Gang Lu. "Viscosity solutions of fully nonlinear parabolic systems." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.

Full text
Abstract:
In this paper, we discuss the viscosity solutions of the weakly coupled systems of fully nonlinear second order degenerate parabolic equations and their Cauchy-Dirichlet problem. We prove the existence, uniqueness and continuity of viscosity solution by combining Perron's method with the technique of coupled solutions. The results here generalize those in [2] and [3].
APA, Harvard, Vancouver, ISO, and other styles
47

Bal, Kaushik. "Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3032/document.

Full text
Abstract:
Les travaux réalisés dans cette thèse concernent l’étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. Par singularité, nous signifions que le problème fait intervenir une non linéarité qui explose au bord du domaine où l’équation est posée. La présence du terme singulier entraine un manque de régularité des solutions. Ce défaut de régularité génère en conséquence un manque de compacité qui ne permet pas d’appliquer directement les méthodes classiques d’analyse non linéaires pour démontrer l’existence de solutions et discuter les propriétés de régularité et de comporteme
APA, Harvard, Vancouver, ISO, and other styles
48

Meyer, John Christopher. "Theoretical aspects of the Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4222/.

Full text
Abstract:
The aim of this thesis is to provide a generic approach to the study of semi-linear parabolic partial differential equations when the nonlinearity fails to be Lipschitz continuous, but is in the class of Hӧlder continuous functions or the class of upper Lipschitz continuous functions. New results are obtained concerning the well-posedness (in the sense of Hadamard) of the initial value problem, namely, uniqueness and conditional continuous dependence results for upper Lipschitz continuous nonlinearities, and an existence result for Hӧlder continuous nonlinearities. To obtain these results, two
APA, Harvard, Vancouver, ISO, and other styles
49

Cao, Yanzhao. "Analysis and numerical approximations of exact controllability problems for systems governed by parabolic differential equations." Diss., Virginia Tech, 1996. http://hdl.handle.net/10919/37771.

Full text
Abstract:
The exact controllability problems for systems modeled by linear parabolic differential equations and the Burger's equations are considered. A condition on the exact controllability of linear parabolic equations is obtained using the optimal control approach. We also prove that the exact control is the limit of appropriate optimal controls. A numerical scheme of computing exact controls for linear parabolic equations is constructed based on this result. To obtain numerical approximation of the exact control for the Burger's equation, we first construct another numerical scheme of computing exa
APA, Harvard, Vancouver, ISO, and other styles
50

Moreno, Claudia. "Control of partial differential equations systems of dispersive type." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASV031.

Full text
Abstract:
Il existe peu de résultats dans la littérature sur la contrôlabilité du système d'équations aux dérivées partielles. Dans cette thèse, nous considérons l'étude des propriétés de contrôle pour trois systèmes couplés d'équations aux dérivées partielles de type dispersif et un problème inverse de récupération d’un coefficient. Le premier système est formé par N équations de Korteweg-de Vries sur un réseau en forme d'étoile. Pour ce système, nous étudierons la contrôlabilité exacte avec N contrôles placés aux extrémités du réseau. Le deuxième système couple trois équations de Korteweg-de Vries. Ce
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!