To see the other types of publications on this topic, follow the link: Differential equations system.

Dissertations / Theses on the topic 'Differential equations system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Differential equations system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Müller, Thorsten G. "Modeling complex systems with differential equations." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10236319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gauthier, Genevieve Carleton University Dissertation Mathematics and Statistics. "Multilevel bilinear system of stochastic differential equations." Ottawa, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kadamani, Sami M. "USFKAD: An Expert System For Partial Differential Equations." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weickert, J. "Navier-Stokes equations as a differential-algebraic system." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800942.

Full text
Abstract:
Nonsteady Navier-Stokes equations represent a differential-algebraic system of strangeness index one after any spatial discretization. Since such systems are hard to treat in their original form, most approaches use some kind of index reduction. Processing this index reduction it is important to take care of the manifolds contained in the differential-algebraic equation (DAE). We investigate for several discretization schemes for the Navier-Stokes equations how the consideration of the manifolds is taken into account and propose a variant of solving these equations along the lines of the theoretically best index reduction. Applying this technique, the error of the time discretisation depends only on the method applied for solving the DAE.
APA, Harvard, Vancouver, ISO, and other styles
5

Chow, Tanya L. M., of Western Sydney Macarthur University, and Faculty of Business and Technology. "Systems of partial differential equations and group methods." THESIS_FBT_XXX_Chow_T.xml, 1996. http://handle.uws.edu.au:8081/1959.7/43.

Full text
Abstract:
This thesis is concerned with the derivation of similarity solutions for one-dimensional coupled systems of reaction - diffusion equations, a semi-linear system and a one-dimensional tripled system. The first area of research in this thesis involves a coupled system of diffusion equations for the existence of two distinct families of diffusion paths. Constructing one-parameter transformation groups preserving the invariance of this system of equations enables similarity solutions for this coupled system to be derived via the classical and non-classical procedures. This system of equation is the uncoupled in the hope of recovering further similarity solutions for the system. Once again, one-parameter groups leaving the uncoupled system invariant are obtained, enabling similarity solutions for the system to be elicited. A one-dimensional pattern formation in a model of burning forms the next component of this thesis. The primary focus of this area is the determination of similarity solutions for this reaction - diffusion system by means of one-parameter transformation group methods. Consequently, similarity solutions which are a generalisation of the solutions of the one-dimensional steady equations derived by Forbes are deduced. Attention in this thesis is then directed toward a semi-linear coupled system representing a predator - prey relationship. Two approaches to solving this system are made using the classical procedure, leading to one-parameter transformation groups which are instrumental in elicting the general similarity solution for this system. A triple system of equations representing a one-dimensional case of diffusion in the presence of three diffusion paths constitutes the next theme of this thesis. In association with the classical and non-classical procedures, the derivation of one-parameter transformation groups leaving this system invariant enables similarity solutions for this system to be deduced. The final strand of this thesis involves a one- dimensional case of the general linear system of coupled diffusion equations with cross-effects for which one-parameter transformation group methods are once more employed. The one-parameter groups constructed for this system prove instrumental in enabling the attainment of similarity solutions for this system to be accomplished<br>Faculty of Business and Technology
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Hwasung. "Strominger's system on non-Kähler hermitian manifolds." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef.

Full text
Abstract:
In this thesis, we investigate the Strominger system on non-Kähler manifolds. We will present a natural generalization of the Strominger system for non-Kähler hermitian manifolds M with c₁(M) = 0. These manifolds are more general than balanced hermitian manifolds with holomorphically trivial canonical bundles. We will then consider explicit examples when M can be realized as a principal torus fibration over a Kähler surface S. We will solve the Strominger system on such construction which also includes manifolds of topology (k−1)(S²×S⁴)#k(S³×S³). We will investigate the anomaly cancellation condition on the principal torus fibration M. The anomaly cancellation condition reduces to a complex Monge-Ampère-type PDE, and we will prove existence of solution following Yau’s proof of the Calabi-conjecture [Yau78], and Fu and Yau’s analysis [FY08]. Finally, we will discuss the physical aspects of our work. We will discuss the Strominger system using α'-expansion and present a solution up to (α')¹-order. In the α'-expansion approach on a principal torus fibration, we will show that solving the anomaly cancellation condition in topology is necessary and sufficient to solving it analytically. We will discuss the potential problems with α'-expansion approach and consider the full Strominger system with the Hull connection. We will show that the α'-expansion does not correctly capture the behaviour of the solution even up to (α')¹-order and should be used with caution.
APA, Harvard, Vancouver, ISO, and other styles
7

Chow, Tanya L. M. "Systems of partial differential equations and group methods." Thesis, [Campbelltown, N.S.W. : The Author], 1996. http://handle.uws.edu.au:8081/1959.7/43.

Full text
Abstract:
This thesis is concerned with the derivation of similarity solutions for one-dimensional coupled systems of reaction - diffusion equations, a semi-linear system and a one-dimensional tripled system. The first area of research in this thesis involves a coupled system of diffusion equations for the existence of two distinct families of diffusion paths. Constructing one-parameter transformation groups preserving the invariance of this system of equations enables similarity solutions for this coupled system to be derived via the classical and non-classical procedures. This system of equation is the uncoupled in the hope of recovering further similarity solutions for the system. Once again, one-parameter groups leaving the uncoupled system invariant are obtained, enabling similarity solutions for the system to be elicited. A one-dimensional pattern formation in a model of burning forms the next component of this thesis. The primary focus of this area is the determination of similarity solutions for this reaction - diffusion system by means of one-parameter transformation group methods. Consequently, similarity solutions which are a generalisation of the solutions of the one-dimensional steady equations derived by Forbes are deduced. Attention in this thesis is then directed toward a semi-linear coupled system representing a predator - prey relationship. Two approaches to solving this system are made using the classical procedure, leading to one-parameter transformation groups which are instrumental in elicting the general similarity solution for this system. A triple system of equations representing a one-dimensional case of diffusion in the presence of three diffusion paths constitutes the next theme of this thesis. In association with the classical and non-classical procedures, the derivation of one-parameter transformation groups leaving this system invariant enables similarity solutions for this system to be deduced. The final strand of this thesis involves a one- dimensional case of the general linear system of coupled diffusion equations with cross-effects for which one-parameter transformation group methods are once more employed. The one-parameter groups constructed for this system prove instrumental in enabling the attainment of similarity solutions for this system to be accomplished
APA, Harvard, Vancouver, ISO, and other styles
8

Baugh, James Emory. "Group analysis of a system of reaction-diffusion equations." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Foley, Dawn Christine. "Applications of State space realization of nonlinear input/output difference equations." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahlip, Rehez Ajmal. "Stability & filtering of stochastic systems." Thesis, Queensland University of Technology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tsui, Ka Cheung. "A networked PDE solving environment /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20TSUI.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003.<br>Includes bibliographical references (leaves 56-58). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
12

Luo, Ye. "Random periodic solutions of stochastic functional differential equations." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16112.

Full text
Abstract:
In this thesis, we study the existence of random periodic solutions for both nonlinear dissipative stochastic functional differential equations (SFDEs) and semilinear nondissipative SFDEs in C([-r,0],R^d). Under some sufficient conditions for the existence of global semiflows for SFDEs, by using pullback-convergence technique to SFDE, we obtain a general theorem about the existence of random periodic solutions. By applying coupled forward-backward infinite horizon integral equations method, we perform the argument of the relative compactness of Wiener-Sobolev spaces in C([0,τ],C([-r,0]L²(Ω))) and the generalized Schauder's fixed point theorem to show the existence of random periodic solutions.
APA, Harvard, Vancouver, ISO, and other styles
13

Garvie, Marcus Roland. "Analysis of a reaction-diffusion system of λ-w type". Thesis, Durham University, 2003. http://etheses.dur.ac.uk/4105/.

Full text
Abstract:
The author studies two coupled reaction-diffusion equations of 'λ-w' type, on an open, bounded, convex domain Ω C R(^d) (d ≤ 3), with a boundary of class C², and homogeneous Neumann boundary conditions. The equations are close to a supercritical Hopf bifurcation in the reaction kinetics, and are model equations for oscillatory reaction-diffusion equations. Global existence, uniqueness and continuous dependence on initial data of strong and weak solutions are proved using the classical Faedo-Galerkin method of Lions and compactness arguments. The work provides a complete case study for the application of this method to systems of nonlinear reaction-diffusion equations. The author also undertook the numerical analysis of the reaction-diffusion system. Results are presented for a fully-practical piecewise linear finite element method by mimicking results in the continuous case. Semi-discrete and fully-discrete error estimates are proved after establishing a priori bounds for various norms of the approximate solutions. Finally, the theoretical results are illustrated and verified via the numerical simulation of periodic plane waves in one space dimension, and preliminary results representing target patterns and spiral solutions presented in two space dimensions.
APA, Harvard, Vancouver, ISO, and other styles
14

馮漢國 and Hon-kwok Fung. "Some linear preserver problems in system theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B3121227X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fung, Hon-kwok. "Some linear preserver problems in system theory /." [Hong Kong] : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B16121673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Moreno, Claudia. "Control of partial differential equations systems of dispersive type." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASV031.

Full text
Abstract:
Il existe peu de résultats dans la littérature sur la contrôlabilité du système d'équations aux dérivées partielles. Dans cette thèse, nous considérons l'étude des propriétés de contrôle pour trois systèmes couplés d'équations aux dérivées partielles de type dispersif et un problème inverse de récupération d’un coefficient. Le premier système est formé par N équations de Korteweg-de Vries sur un réseau en forme d'étoile. Pour ce système, nous étudierons la contrôlabilité exacte avec N contrôles placés aux extrémités du réseau. Le deuxième système couple trois équations de Korteweg-de Vries. Ce système est appelé dans la littérature le système Hirota-Satsuma généralisé. Nous étudions la contrôlabilité exacte avec trois contrôles frontières.Après, nous étudierons un système parabolique du quatrième ordre formé par deux équations de Kuramoto-Sivashinsky. Nous prouvons l’existence et l’unicité de la solution du système. Ensuite, nous étudions la nulle contrôlabilité du système avec deux contrôles, pour supprimer un contrôle, nous avons besoin d’une inégalité de Carleman qui n’est pas encore prouvée. Finalement, nous présentons pour le système parabolique du quatrième ordre le problème inverse de récupérer le coefficient anti-diffusion à partir des mesures de la solution<br>There are few results in the literature about the controllability of partial differential equations system. In this thesis, we consider the study of control properties for three coupled systems of partial differential equations of dispersive type and an inverse problem of recovering a coefficient. The first system is formed by N Korteweg-de Vries equations on a star-shaped network. For this system we will study the exact controllability using N controls placed in the external nodes of the network. The second system couples three Korteweg-de Vries equations. This system is called in the literature the generalized Hirota-Satsuma system. We study the exact controllability with three boundary controls.On the other hand, we will study a fourth-order parabolic system formed by two Kuramoto-Sivashinsky equations. We prove the well-posedness of the system with some regularity results. Then we study the null controllability of the system with two controls, to remove a control, we need a Carleman inequality which is not proven yet. Finally, we present for the fourth-order parabolic system the inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution
APA, Harvard, Vancouver, ISO, and other styles
17

Siegert, Wolfgang. "Local Lyapunov exponents sublimiting growth rates of linear random differential equations." Berlin Heidelberg Springer, 2007. http://d-nb.info/991321065/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hermansyah, Edy. "An investigation of collocation algorithms for solving boundary value problems system of ODEs." Thesis, University of Newcastle Upon Tyne, 2001. http://hdl.handle.net/10443/1976.

Full text
Abstract:
This thesis is concerned with an investigation and evaluation of collocation algorithms for solving two-point boundary value problems for systems of ordinary differential equations. An emphasis is on developing reliable and efficient adaptive mesh selection algorithms in piecewise collocation methods. General background materials including basic concepts and descriptions of the method as well as some functional analysis tools needed in developing some error estimates are given at the beginning. A brief review of some developments in the methods to be used is provided for later referencing. By utilising the special structure of the collocation matrices, a more compact block matrix structure is introduced and an algorithm for generating and solving the matrix is proposed. Some practical aspects and computational considerations of matrices involved in the collocation process such as analysis of arithmetic operations and amount of memory spaces needed are considered. An examination of scaling process to reduce the condition number is also presented. A numerical evaluation of some error estimates developed by considering the differential operator, the related matrices and the residual is carried out. These estimates are used to develop adaptive mesh selection algorithms, in particular as a cheap criterion for terminating the computation process. Following a discussion on mesh selection strategies, a criterion function for use in adaptive algorithms is introduced and a numerical scheme to equidistributing values of the criterion function is proposed. An adaptive algorithm based on this criterion is developed and the results of numerical experiments are compared with those using some well known criterion functions. The various examples are chosen in such a way that they include problems with interior or boundary layers. In addition, an algorithm has been developed to predict the necessary number of subintervals for a given tolerance, with the aim of improving the efficiency of the whole process. Using a good initial mesh in adaptive algorithms would be expected to provide some further improvement in the algorithms. This leads to the idea of locating the layer regions and determining suitable break points in such regions before the numerical process. Based on examining the eigenvalues of the coefficient matrix in the differential equation in the specified interval, using their magnitudes and rates of change, the algorithms for predicting possible layer regions and estimating the number of break points needed in such regions are constructed. The effectiveness of these algorithms is evaluated by carrying out a number of numerical experiments. The final chapter gives some concluding remarks of the work and comment on results of numerical experiments. Certain possible improvements and extensions for further research are also briefly given.
APA, Harvard, Vancouver, ISO, and other styles
19

Yevik, Andrei. "Numerical approximations to the stationary solutions of stochastic differential equations." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/7777.

Full text
Abstract:
This thesis investigates the possibility of approximating stationary solutions of stochastic differential equations using numerical methods. We consider a particular class of stochastic differential equations, which are known to generate random dynamical systems. The existence of stochastic stationary solution is proved using global attractor approach. Euler's numerical method, applied to the stochastic differential equation, is proved to generate a discrete random dynamical system. The existence of stationary solution is proved again using global attractor approach. At last we prove that the approximate stationary point converges in mean-square sense to the exact one as the time step of the numerical scheme diminishes.
APA, Harvard, Vancouver, ISO, and other styles
20

Di, Cosmo Jonathan. "Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209863.

Full text
Abstract:
The nonlinear Schrödinger equation appears in different fields of physics, for example in the theory of Bose-Einstein condensates or in wave propagation models. From a mathematical point of view, the study of this equation is interesting and delicate, notably because it can have a very rich set of solutions with various behaviours.<p><p>In this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.<p><p>We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./<p><p>L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés. <p><p>Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble. <p><p>Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel.<br>Doctorat en sciences, Spécialisation mathématiques<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Bo. "Steady State Solutions for a System of Partial Differential Equations Arising from Crime Modeling." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/hmc_theses/78.

Full text
Abstract:
I consider a model for the control of criminality in cities. The model was developed during my REU at UCLA. The model is a system of partial differential equations that simulates the behavior of criminals and where they may accumulate, hot spots. I have proved a prior bounds for the partial differential equations in both one-dimensional and higher dimensional case, which proves the attractiveness and density of criminals in the given area will not be unlimitedly high. In addition, I have found some local bifurcation points in the model.
APA, Harvard, Vancouver, ISO, and other styles
22

Shikongo, Albert. "Robust numerical methods to solve differential equations arising in cancer modeling." University of the Western Cape, 2020. http://hdl.handle.net/11394/7250.

Full text
Abstract:
Philosophiae Doctor - PhD<br>Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems. From a mathematical point of view, the sequence of gene-environment interactions often leads to mathematical models which are hard to solve analytically. Therefore, this thesis focuses on the design and implementation of reliable numerical methods for nonlinear, first order delay differential equations, second order non-linear time-dependent parabolic partial (integro) differential problems and optimal control problems arising in cancer modeling. The development of cancer modeling is necessitated by the lack of reliable numerical methods, to solve the models arising in the dynamics of this dreadful disease. Our focus is on chemotherapy, biological stoichometry, double infections, micro-environment, vascular and angiogenic signalling dynamics. Therefore, because the existing standard numerical methods fail to capture the solution due to the behaviors of the underlying dynamics. Analysis of the qualitative features of the models with mathematical tools gives clear qualitative descriptions of the dynamics of models which gives a deeper insight of the problems. Hence, enabling us to derive robust numerical methods to solve such models.<br>2021-04-30
APA, Harvard, Vancouver, ISO, and other styles
23

SOAVE, NICOLA. "Variational and geometric methods for nonlinear differential equations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.

Full text
Abstract:
This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.
APA, Harvard, Vancouver, ISO, and other styles
24

Alzabut, Jehad. "Periodic Solutions And Stability Of Linear Impulsive Delay Differential Equations." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12604901/index.pdf.

Full text
Abstract:
In this thesis, we investigate impulsive differential systems with delays of the form And more generally of the form The dissertation consists of five chapters. The first chapter serves as introduction, contains preliminary considerations and assertions that will be encountered in the sequel. In chapter 2, we construct the adjoint systems and obtain the variation of parameters formulas of the solutions in terms of fundamental matrices. The asymptotic behavior of solutions of systems satisfying the Perron condition is investigated in chapter 3. In chapter4, we give a result that characterizes the behavior of solutions in the case there is a bounded solution. Moreover, a necessary and sufficient condition for the existence of periodic solutions is obtained. In the last chapter, a series of consequences on the existence of periodic solutions of functionally equivlent impulsive systems with delays is established.
APA, Harvard, Vancouver, ISO, and other styles
25

Post, Katharina. "A System of Non-linear Partial Differential Equations Modeling Chemotaxis with Sensitivity Functions." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 1999. http://dx.doi.org/10.18452/14365.

Full text
Abstract:
Wir betrachten ein System nichtlinearer parabolischer partieller Differentialgleichungen zur Modellierung des biologischen Phänomens Chemotaxis, das unter anderem in Aggregationsprozessen in Lebenszyklen bestimmter Einzeller eine wichtige Rolle spielt. Unser Chemotaxismodell benutzt Sensitivitäts funktionen, die die vorkommenden biologischen Prozesse genauer spezifizieren. Trotz der durch die Sensitivitätsfunktionen eingebrachten, zusätzlichen Nichtlinearitäten in den Gleichungen erhalten wir zeitlich globale Existenz von Lösungen für verschiedene biologisch realistische Klassen von Sensitivitätsfunktionen und können unter unterschiedlichen Bedingungen an die Systemdaten Konvergenz der Lösungen zu trivialen und nicht-trivialen stationären Punkten beweisen.<br>We consider a system of non-linear parabolic partial differential equations modeling chemotaxis, a biological phenomenon which plays a crucial role in aggregation processes in the life cycle of certain unicellular organisms. Our chemotaxis model introduces sensitivity functions which help describe the biological processes more accurately. In spite of the additional non-linearities introduced by the sensitivity functions into the equations, we obtain global existence of solutions for different classes of biologically realistic sensitivity functions and can prove convergence of the solutions to trivial and non-trivial steady states.
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Li. "The asymptotic behavior for the Vlasov-Poisson-Boltzmann system & heliostat with spinning-elevation tracking mode /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b30082419f.pdf.

Full text
Abstract:
Thesis (Ph.D.)--City University of Hong Kong, 2009.<br>"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [84]-87)
APA, Harvard, Vancouver, ISO, and other styles
27

Yang, Lixiang. "Modeling Waves in Linear and Nonlinear Solids by First-Order Hyperbolic Differential Equations." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1303846979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Bo. "The existence of bistable stationary solutions of random dynamical systems generated by stochastic differential equations and random difference equations." Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/14255.

Full text
Abstract:
In this thesis, we study the existence of stationary solutions for two cases. One is for random difference equations. For this, we prove the existence and uniqueness of the stationary solutions in a finite-dimensional Euclidean space Rd by applying the coupling method. The other one is for semi linear stochastic evolution equations. For this case, we follows Mohammed, Zhang and Zhao [25]'s work. In an infinite-dimensional Hilbert space H, we release the Lipschitz constant restriction by using Arzela-Ascoli compactness argument. And we also weaken the globally bounded condition for F by applying forward and backward Gronwall inequality and coupling method.
APA, Harvard, Vancouver, ISO, and other styles
29

Poon, Chun-Kin. "Numerical simulation of coupled long wave-short wave system with a mismatch in group velocities." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35381334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ertem, Turker. "Asymptotic Integration Of Dynamical Systems." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615405/index.pdf.

Full text
Abstract:
In almost all works in the literature there are several results showing asymptotic relationships between the solutions of x&prime<br>&prime<br>= f (t, x) (0.1) and the solutions 1 and t of x&prime<br>&prime<br>= 0. More specifically, the existence of a solution of (0.1) asymptotic to x(t) = at + b, a, b &isin<br>R has been obtained. In this thesis we investigate in a systematic way the asymptotic behavior as t &rarr<br>&infin<br>of solutions of a class of differential equations of the form (p(t)x&prime<br>)&prime<br>+ q(t)x = f (t, x), t &ge<br>t_0 (0.2) and (p(t)x&prime<br>)&prime<br>+ q(t)x = g(t, x, x&prime<br>), t &ge<br>t_0 (0.3) by the help of principal u(t) and nonprincipal v(t) solutions of the corresponding homogeneous equation (p(t)x&prime<br>)&prime<br>+ q(t)x = 0, t &ge<br>t_0. (0.4) Here, t_0 &ge<br>0 is a real number, p &isin<br>C([t_0,&infin<br>), (0,&infin<br>)), q &isin<br>C([t_0,&infin<br>),R), f &isin<br>C([t_0,&infin<br>) &times<br>R,R) and g &isin<br>C([t0,&infin<br>) &times<br>R &times<br>R,R). Our argument is based on the idea of writing the solution of x&prime<br>&prime<br>= 0 in terms of principal and nonprincipal solutions as x(t) = av(t) + bu(t), where v(t) = t and u(t) = 1. In the proofs, Banach and Schauder&rsquo<br>s fixed point theorems are used. The compactness of the operator is obtained by employing the compactness criteria of Riesz and Avramescu. The thesis consists of three chapters. Chapter 1 is introductory and provides statement of the problem, literature review, and basic definitions and theorems. In Chapter 2 first we deal with some asymptotic relationships between the solutions of (0.2) and the principal u(t) and nonprincipal v(t) solutions of (0.4). Then we present existence of a monotone positive solution of (0.3) with prescribed asimptotic behavior. In Chapter 3 we introduce the existence of solution of a singular boundary value problem to the Equation (0.2).
APA, Harvard, Vancouver, ISO, and other styles
31

Amir, Taher Kolar. "Comparison of numerical methods for solving a system of ordinary differential equations: accuracy, stability and efficiency." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48211.

Full text
Abstract:
In this thesis, we compute approximate solutions to initial value problems of first-order linear ODEs using five explicit Runge-Kutta methods, namely the forward Euler method, Heun's method, RK4, RK5, and RK8. This thesis aims to compare the accuracy, stability, and efficiency properties of the five explicit Runge-Kutta methods. For accuracy, we carry out a convergence study to verify the convergence rate of the five explicit Runge-Kutta methods for solving a first-order linear ODE. For stability, we analyze the stability of the five explicit Runge-Kutta methods for solving a linear test equation. For efficiency, we carry out an efficiency study to compare the efficiency of the five explicit Runge-Kutta methods for solving a system of first-order linear ODEs, which is the main focus of this thesis. This system of first-order linear ODEs is a semi-discretization of a two-dimensional wave equation.
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Zhengyang. "A class of state-dependent delay differential equations and applications to forest growth." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0062/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude d'une classe d'équations différentielles à retard dépendant de l'état -- ces équations provenant d'un modèle structuré en taille. La principale motivation de cette thèse provient de la volonté d'ajuster les paramètres du système d'équations étudiées vis-à-vis des données générées par un simulateur de forêts, appelé SORTIE. Deux types de forêts sont étudiés ici: d'une part une forêt ne comportant qu'une seule espèce d'arbre, et d'autre part une forêt comportant deux espèces d'arbres (au chapitre 2). Les simulations numériques du système d'équations correspondent relativement bien aux données générées par SORTIE, ce qui montre que le système considéré peut être utilisé afin d'écrire la dynamique de populations d'une forêt. De plus, un modèle plus étendu prenant en compte la position spatiale des arbres est proposé dans le chapitre 2, dans le cas de forêts possédant deux espèces d'arbres. Les simulations numériques de ce modèle permettent de visualiser la propagation spatiale des forêts. Les chapitres 3 et 4 se concentrent sur l'analyse mathématique des équations différentielles à retard considérées. Les propriétés du semi-flot associé au système sont étudiées au chapitre 3, où l'on démontre en particulier que ce semi-flot n'est pas continu en temps. Le caractère dissipatif et borné du semi-flot, pour des modèles de forêts comportant une ou deux espèces d'arbres, est étudié dans le chapitre 4. En outre, afin d'étudier la dynamique de population d'une forêt (d'une seule espèce d'arbre) après l'introduction d'un parasite, nous construisons dans le chapitre 5 un système proie-prédateur dont la proie (à savoir la forêt) est modélisée par le système d'équations différentielles à retard dépendant de l'état étudié auparavant, et dont le prédateur (à savoir le parasite) est modélisé par une équation différentielle ordinaire. De nombreuses simulations numériques associées à différents scénarios sont faites, afin d'explorer le comportement complexe des solutions du au couplage proie-prédateur et les équations à retard dépendant de l'état<br>This thesis is devoted to the studies of a class of state-dependent delay differential equations. This class of equations is derived from a size-structured model.The motivation comes from the parameter fittings of this system to a forest simulator called SORTIE. Cases of both single species forest and two-species forest are considered in Chapter 2. The numerical simulations of the system correspond relatively very well to the forest data generated by SORTIE, which shows that this system is able to be used to describe the population dynamics of forests. Moreover, an extended model considering the spatial positions of trees is also proposed in Chapter 2 for the two-species forest case. From the numerical simulations of this spatial model one can see the diffusion of forests in space. Chapter 3 and 4 focus on the mathematical analysis of the state-dependent delay differential equations. The properties of semiflow generated by this system are studied in Chapter 3, where we find that this semiflow is not time-continuous. The boundedness and dissipativity of the semiflow for both single species model and multi-species model are studied in Chapter 4. Furthermore, in order to study the population dynamics after the introduction of parasites into a forest, a predator-prey system consisting of the above state-dependent delay differential equation (describing the forest) and an ordinary differential equation (describing the parasites) is constructed in Chapter 5 (only the single species forest is considered here). Numerical simulations in several scenarios and cases are operated to display the complex behaviours of solutions appearing in this system with the predator-prey relation and the state-dependent delay
APA, Harvard, Vancouver, ISO, and other styles
33

Poon, Chun-Kin, and 潘俊健. "Numerical simulation of coupled long wave-short wave system with a mismatch in group velocities." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35381334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Burak, Senad A. "Modelling and identification of dynamic systems using modal and spectral data /." Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phb945.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Leto, Jonathan. "SOLITARY WAVE FAMILIES IN TWO NON-INTEGRABLE MODELS USING REVERSIBLE SYSTEMS THEORY." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3504.

Full text
Abstract:
In this thesis, we apply a recently developed technique to comprehensively categorize all possible families of solitary wave solutions in two models of topical interest. The models considered are: a) the Generalized Pochhammer-Chree Equations, which govern the propagation of longitudinal waves in elastic rods, and b) a generalized microstructure PDE. Limited analytic results exist for the occurrence of one family of solitary wave solutions for each of these equations. Since, as mentioned above, solitary wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions of both models here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves for each model, we find a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. For the microstructure equation, the new family of solutions occur in regions of parameter space distinct from the known solitary wave solutions and are thus entirely new. Directions for future work, including the dynamics of each family of solitary waves using exponential asymptotics techniques, are also mentioned.<br>M.S.<br>Department of Mathematics<br>Sciences<br>Mathematical Science MS
APA, Harvard, Vancouver, ISO, and other styles
36

Larsson, Erik. "Identification of stochastic continuous-time systems : algorithms, irregular sampling and Cramér-Rao bounds /." Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Yao. "Stochastic perturbation theory and its application to complex biological networks -- a quantification of systematic features of biological networks." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49013.

Full text
Abstract:
The primary objective of this thesis is to make a quantitative study of complex biological networks. Our fundamental motivation is to obtain the statistical dependency between modules by injecting external noise. To accomplish this, a deep study of stochastic dynamical systems would be essential. The first chapter is about the stochastic dynamical system theory. The classical estimation of invariant measures of Fokker-Planck equations is improved by the level set method. Further, we develop a discrete Fokker-Planck-type equation to study the discrete stochastic dynamical systems. In the second part, we quantify systematic measures including degeneracy, complexity and robustness. We also provide a series of results on their properties and the connection between them. Then we apply our theory to the JAK-STAT signaling pathway network.
APA, Harvard, Vancouver, ISO, and other styles
38

Thomas, Philipp. "Systematic approximation methods for stochastic biochemical kinetics." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16197.

Full text
Abstract:
Experimental studies have shown that the protein abundance in living cells varies from few tens to several thousands molecules per species. Molecular fluctuations roughly scale as the inverse square root of the number of molecules due to the random timing of reactions. It is hence expected that intrinsic noise plays an important role in the dynamics of biochemical networks. The Chemical Master Equation is the accepted description of these systems under well-mixed conditions. Because analytical solutions to this equation are available only for simple systems, one often has to resort to approximation methods. A popular technique is an expansion in the inverse volume to which the reactants are confined, called van Kampen's system size expansion. Its leading order terms are given by the phenomenological rate equations and the linear noise approximation that quantify the mean concentrations and the Gaussian fluctuations about them, respectively. While these approximations are valid in the limit of large molecule numbers, it is known that physiological conditions often imply low molecule numbers. We here develop systematic approximation methods based on higher terms in the system size expansion for general biochemical networks. We present an asymptotic series for the moments of the Chemical Master Equation that can be computed to arbitrary precision in the system size expansion. We then derive an analytical approximation of the corresponding time-dependent probability distribution. Finally, we devise a diagrammatic technique based on the path-integral method that allows to compute time-correlation functions. We show through the use of biological examples that the first few terms of the expansion yield accurate approximations even for low number of molecules. The theory is hence expected to closely resemble the outcomes of single cell experiments.
APA, Harvard, Vancouver, ISO, and other styles
39

Schlöder, Johannes P. "Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung." Bonn : [s.n.], 1987. http://catalog.hathitrust.org/api/volumes/oclc/18814825.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Smario, David J. "Multicorrelation analysis and state space reconstruction /." Online version of thesis, 1994. http://hdl.handle.net/1850/11443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Powell, Megan Olivia. "Mathematical Models of the Activated Immune System During HIV Infection." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1301415627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kiseliauskaitė, Eglė. "Savaime ir priverstinai virpanti procesų transformavimo sistema." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2004. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2004~D_20040604_130419-58999.

Full text
Abstract:
The differential equations are often used in practice for making different mathematical models of mechanical systems and they are the best help for modelling. The flow, coming around elastic mechanical system, when there are some conditions, awakes the auto-oscillations of it. At my work I onquire the change of auto-oscillations into the electrical signal. If we want to reach it, we must give for mechanical system an extra stimulation by electric network. The purpose of my work - inquire simplification model of this made system; area of existence synchronic processes, when we have relaxed and forced oscillations; to analyse different trajectories of different types this differential equation; to find spectral charakteristics. The analytical and graphical results were forthcoming, let uncover some steady treatments' and their surroundings' attributes of pending system.
APA, Harvard, Vancouver, ISO, and other styles
43

Druet, Pierre-Etienne. "Analysis of a coupled system of partial differential equations modeling the interaction between melt flow, global heat transfer and applied magnetic fields in crystal growth." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2009. http://dx.doi.org/10.18452/15893.

Full text
Abstract:
Hauptthema der Dissertation ist die Analysis eines nichtlinearen, gekoppelten Systems partieller Differentialgleichungen (PDG), das in der Modellierung der Kristallzüchtung aus der Schmelze mit Magnetfeldern vorkommt. Die zu beschreibenden Phenomäne sind einerseits der im elektromagnetisch geheizten Schmelzofen erfolgende Wärmetransport (Wärmeleitung, -konvektion und -strahlung), und andererseits die Bewegung der Halbleiterschmelze unter dem Einfluss der thermischen Konvektion und der angewendeten elektromagnetischen Kräfte. Das Modell besteht aus den Navier-Stokeschen Gleichungen für eine inkompressible Newtonsche Flüssigkeit, aus der Wärmeleitungsgleichung und aus der elektrotechnischen Näherung des Maxwellschen Systems. Wir erörtern die schwache Formulierung dieses PDG Systems, und wir stellen ein Anfang-Randwertproblem auf, das die Komplexität der Anwendung widerspiegelt. Die Hauptfrage unserer Untersuchung ist die Wohlgestelltheit dieses Problems, sowohl im stationären als auch im zeitabhängigen Fall. Wir zeigen die Existenz schwacher Lösungen in geometrischen Situationen, in welchen unstetige Materialeigenschaften und nichtglatte Trennfläche auftreten dürfen, und für allgemeine Daten. In der Lösung zum zeitabhängigen Problem tritt ein Defektmaß auf, das ausser der Flüssigkeit im Rand der elektrisch leitenden Materialien konzentriert bleibt. Da eine globale Abschätzung der im Strahlungshohlraum ausgestrahlten Wärme auch fehlt, rührt ein Teil dieses Defektmaßes von der nichtlokalen Strahlung her. Die Eindeutigkeit der schwachen Lösung erhalten wir nur unter verstärkten Annahmen: die Kleinheit der gegebenen elektrischen Leistung im stationären Fall, und die Regularität der Lösung im zeitabhängigen Fall. Regularitätseigenschaften wie die Beschränktheit der Temperatur werden, wenn auch nur in vereinfachten Situationen, hergeleitet: glatte Materialtrennfläche und Temperaturunabhängige Koeffiziente im Fall einer stationären Analysis, und entkoppeltes, zeitharmonisches Maxwell für das transiente Problem.<br>The present PhD thesis is devoted to the analysis of a coupled system of nonlinear partial differential equations (PDE), that arises in the modeling of crystal growth from the melt in magnetic fields. The phenomena described by the model are mainly the heat-transfer processes (by conduction, convection and radiation) taking place in a high-temperatures furnace heated electromagnetically, and the motion of a semiconducting melted material subject to buoyancy and applied electromagnetic forces. The model consists of the Navier-Stokes equations for a newtonian incompressible liquid, coupled to the heat equation and the low-frequency approximation of Maxwell''s equations. We propose a mathematical setting for this PDE system, we derive its weak formulation, and we formulate an (initial) boundary value problem that in the mean reflects the complexity of the real-life application. The well-posedness of this (initial) boundary value problem is the mainmatter of the investigation. We prove the existence of weak solutions allowing for general geometrical situations (discontinuous coefficients, nonsmooth material interfaces) and data, the most important requirement being only that the injected electrical power remains finite. For the time-dependent problem, a defect measure appears in the solution, which apart from the fluid remains concentrated in the boundary of the electrical conductors. In the absence of a global estimate on the radiation emitted in the cavity, a part of the defect measure is due to the nonlocal radiation effects. The uniqueness of the weak solution is obtained only under reinforced assumptions: smallness of the input power in the stationary case, and regularity of the solution in the time-dependent case. Regularity properties, such as the boundedness of temperature are also derived, but only in simplified settings: smooth interfaces and temperature-independent coefficients in the case of a stationary analysis, and, additionally for the transient problem, decoupled time-harmonic Maxwell.
APA, Harvard, Vancouver, ISO, and other styles
44

Zeng, Honghai. "A web-based high performance simulation system for transport and retention of dissolved contaminants in soils." Diss., Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-10082002-144653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yantır, Ahmet Ufuktepe Ünal. "Oscillation theory for second order differential equations and dynamic equations on time scales/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Raby, Douglas Allan. "Development of a system architecture and applications for an integrated computer software system for the analysis and design of steel structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ48372.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shao, Zhiyu S. "TWO-DIMENSIONAL HYDRODYNAMIC MODELING OF TWO-PHASE FLOW FOR UNDERSTANDING GEYSER PHENOMENA IN URBAN STORMWATER SYSTEM." UKnowledge, 2013. http://uknowledge.uky.edu/ce_etds/5.

Full text
Abstract:
During intense rain events a stormwater system can fill rapidly and undergo a transition from open channel flow to pressurized flow. This transition can create large discrete pockets of trapped air in the system. These pockets are pressurized in the horizontal reaches of the system and then are released through vertical vents. In extreme cases, the transition and release of air pockets can create a geyser feature. The current models are inadequate for simulating mixed flows with complicated air-water interactions, such as geysers. Additionally, the simulation of air escaping in the vertical dropshaft is greatly simplified, or completely ignored, in the existing models. In this work a two-phase numerical model solving the Navier-Stokes equations is developed to investigate the key factors that form geysers. A projection method is used to solve the Navier-Stokes Equation. An advanced two-phase flow model, Volume of Fluid (VOF), is implemented in the Navier-Stokes solver to capture and advance the interface. This model has been validated with standard two-phase flow test problems that involve significant interface topology changes, air entrainment and violent free surface motion. The results demonstrate the capability of handling complicated two-phase interactions. The numerical results are compared with experimental data and theoretical solutions. The comparisons consistently show satisfactory performance of the model. The model is applied to a real stormwater system and accurately simulates the pressurization process in a horizontal channel. The two-phase model is applied to simulate air pockets rising and release motion in a vertical riser. The numerical model demonstrates the dominant factors that contribute to geyser formation, including air pocket size, pressurization of main pipe and surcharged state in the vertical riser. It captures the key dynamics of two-phase flow in the vertical riser, consistent with experimental results, suggesting that the code has an excellent potential of extending its use to practical applications.
APA, Harvard, Vancouver, ISO, and other styles
48

Eisenhofer, Sabine [Verfasser], Rupert [Akademischer Betreuer] Lasser, Mitsuharu [Akademischer Betreuer] Otani, and Dirk [Akademischer Betreuer] Langemann. "A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria / Sabine Eisenhofer. Gutachter: Mitsuharu Otani ; Dirk Langemann ; Rupert Lasser. Betreuer: Rupert Lasser." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1037198336/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ghanavati, Goodarz. "Statistical Analysis of High Sample Rate Time-series Data for Power System Stability Assessment." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/333.

Full text
Abstract:
The motivation for this research is to leverage the increasing deployment of the phasor measurement unit (PMU) technology by electric utilities in order to improve situational awareness in power systems. PMUs provide unprecedentedly fast and synchronized voltage and current measurements across the system. Analyzing the big data provided by PMUs may prove helpful in reducing the risk of blackouts, such as the Northeast blackout in August 2003, which have resulted in huge costs in past decades. In order to provide deeper insight into early warning signs (EWS) of catastrophic events in power systems, this dissertation studies changes in statistical properties of high-resolution measurements as a power system approaches a critical transition. The EWS under study are increases in variance and autocorrelation of state variables, which are generic signs of a phenomenon known as critical slowing down (CSD). Critical slowing down is the result of slower recovery of a dynamical system from perturbations when the system approaches a critical transition. CSD has been observed in many stochastic nonlinear dynamical systems such as ecosystem, human body and power system. Although CSD signs can be useful as indicators of proximity to critical transitions, their characteristics vary for different systems and different variables within a system. The dissertation provides evidence for the occurrence of CSD in power systems using a comprehensive analytical and numerical study of this phenomenon in several power system test cases. Together, the results show that it is possible extract information regarding not only the proximity of a power system to critical transitions but also the location of the stress in the system from autocorrelation and variance of measurements. Also, a semi-analytical method for fast computation of expected variance and autocorrelation of state variables in large power systems is presented, which allows one to quickly identify locations and variables that are reliable indicators of proximity to instability.
APA, Harvard, Vancouver, ISO, and other styles
50

Ramírez, Sadovski Valentín. "Qualitative theory of differential equations in the plane and in the space, with emphasis on the center-focus and on the Lotka-Volterra systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography