Dissertations / Theses on the topic 'Differential geometry – Global differential geometry – Global differential geometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Differential geometry – Global differential geometry – Global differential geometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pouget, Marc. "Geometry of surfaces : from the estimation of local differential quantities to the robust extraction of global differential features." Nice, 2005. http://www.theses.fr/2005NICE4052.

Full text
Abstract:
Ce travail de recherche porte sur les aspects géométriques des mathématiques, de l’informatique et applications. Ce travail est fortement motivé par des applications telles que la conception assistée par ordinateur, l’imagerie médicale, le calcul scientifique et la simulation ou encore la réalité virtuelle et le multimédia. Cette thèse propose une analyse de la géométrie des surfaces tant d’un point de vue local que global. D’un point de vue local, le problème est l’estimation de la normale, des courbures et quantités d’ordre supérieur à partir d’une surface lise échantillonnée. D’un point de vue global, nous analysons les lignes d’extrême de courbure sur une surface, appelées ridges. D’une part, une méthode d’estimation des quantités différentielles locales avec ajustement d’un polynôme est étudiée : les propriétés de convergence sont établies et un algorithme est proposé et implémenté. D’autre part, des algorithmes sont développés pour le calcul de la topologie des ridges pour des surfaces discrétisées par un maillage ou paramétrées. Des conditions précises d’échantillonnage ainsi qu’un algorithme certifié sont données pour le cas d’une surface discrétisée par un maillage. Dans le cas d’une surface paramétrée, une équation implicite des ridges est calculée dans le domaine de paramétrage et les singularités sont analysées. Pour une paramétrisation polynomiale, ces équations sont aussi polynomiales et des méthodes spécifiques de calcul formel sont développées pour calculer la topologie de la courbe singulière des ridges<br>This research work relates to the geometrical aspects of mathematics, computer sciences and applications. This work is motivated by applications such as computer aided design, medical imaging, scientific computations and simulations or also virtual reality and multimedia. This thesis proposes an analysis of some local as well as global topics of the geometry of surfaces. From a local point of view, the problem is the estimation of the normal, the curvatures and quantities of higher order from points sampled on a smooth surface. From a global point of view, we analyze the lines of extreme curvature on surfaces, called ridges. On the one hand, a method for the estimation of local differential quantities with polynomial fitting is studied : the properties of convergence are established and an algorithm is proposed and implemented. On the other hand, algorithms are developed for the computation of the topology on the ridges for surfaces discretized by a mesh or parameterized. Precise conditions of sampling as wel as certified algorithm are given in the case of a surface, an implicit equation of the ridges is derived in the parametric domain and the singularities are analyzed for a polynomial parameterization. The equations are also polynomial, and specific methods of computer algebra are developed to compute the topology on the singular curve of the ridges
APA, Harvard, Vancouver, ISO, and other styles
2

Stewart, Chris G. "Incorporating global information into local nonlinear controllers." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/41900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hitomi, Eduardo Eizo Aramaki 1989. "Equações parabólicas quase lineares e fluxos de curvatura média em espaços euclidianos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306218.

Full text
Abstract:
Orientador: Olivâine Santana de Queiroz<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica<br>Made available in DSpace on 2018-08-27T03:06:43Z (GMT). No. of bitstreams: 1 Hitomi_EduardoEizoAramaki_M.pdf: 5800906 bytes, checksum: 04b93921a20d8ab0f71d4977b9e93e73 (MD5) Previous issue date: 2015<br>Resumo: Nesta dissertação realizamos um estudo sobre o fluxo de curvatura média em espaços Euclidianos sob as perspectivas analítica e geométrica. Tratamos inicialmente da existência e regularidade de soluções em tempos pequenos de equações parabólicas quase lineares de segunda ordem em variedades Riemannianas, o que é essencial para garantirmos a existência de uma solução suave em tempo pequeno do fluxo de curvatura média. Em uma segunda parte, passamos a alguns resultados sobre o comportamento no intervalo maximal de existência de uma solução suave da hipersuperfície em evolução, por meio de equações das componentes geométricas associadas e de Princípios de Máximo. Próximo desse tempo maximal, analisamos a formação de singularidades do Tipo I por meio da Fórmula de Monotonicidade de Huisken e de rescalings, e do Tipo II por meio de uma técnica de blow-up devida a Hamilton. Em especial, reservamos o caso de curvas a um capítulo a parte e apresentamos resultados clássicos da teoria de curve-shortening flows<br>Abstract: In this dissertation we study the mean curvature flow in Euclidean spaces from the analytic and geometric point of view. We deal initially with short-time existence and regularity of a solution for second order quasilinear parabolic equations on Riemannian manifolds, which is essential to guarantee the short-time existence of a smooth solution to the mean curvature flow. In a second part, we present some results concerning the behavior of the evolving hypersurface close to the maximal time of existence of a smooth solution, by means of Maximum Principles and evolution equations of the associated geometric components. Close to this maximal time, we analyse the formation of singularities of Type I by means of rescalings and Huisken's Monotonicity Formula, and of Type II by means of a blow-up technique due to Hamilton. In particular, we reserve the case of curves to a separate chapter, where we present some classical results in curve-shortening flow theory<br>Mestrado<br>Matematica<br>Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
4

Paula, Pedro Manfrim Magalhães de 1991. "Consequências geométricas associadas à limitação do tensor de Bakry-Émery-Ricci." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306950.

Full text
Abstract:
Orientador: Diego Sebastian Ledesma<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica<br>Made available in DSpace on 2018-08-26T22:36:25Z (GMT). No. of bitstreams: 1 Paula_PedroManfrimMagalhaesde_M.pdf: 1130226 bytes, checksum: bbd8d375ddf7846ed2eafe024103e682 (MD5) Previous issue date: 2015<br>Resumo: Este trabalho apresenta um estudo sobre variedades Riemannianas que possuem um tensor de Bakry-Émery-Ricci com limitações. Inicialmente abordamos tanto aspectos da geometria Riemanniana tradicional como métricas e geodésicas, quanto aspectos mais avançados como as fórmulas de Bochner, Weitzenböck e o teorema de Hodge. Em seguida discutimos a convergência de Gromov-Hausdorff e suas propriedades, além de serem apresentados alguns teoremas como os de Kasue e Fukaya. Por fim estudamos as propriedades topológicas e geométricas de variedades com limitação no tensor de Bakry-Émery-Ricci e o comportamento de tais limitações com respeito à submersões e à convergência de Gromov-Hausdorff<br>Abstract: This work presents a study about Riemannian manifolds having a Bakry-Émery-Ricci tensor with bounds. Initially we approached both the traditional aspects of Riemannian geometry like metrics and geodesics, as more advanced aspects like the Bochner, Weitzenböck formulas and the Hodge's theorem. Then we discussed the Gromov-Hausdorff convergence and its properties, in addition to showing some theorems as those from Kasue and Fukaya. Lastly we studied the topological and geometric properties of manifolds with bounds on the Bakry-Émery-Ricci tensor and the behavior of these bounds with respect to submersions and the Gromov-Hausdorff convergence<br>Mestrado<br>Matematica<br>Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
5

Takei, Yoshitsugu. "THE GEOMETRY OF BICHARACTERISTICS AND THE GLOBAL EXISTENCE OF HOLOMORPHIC SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS." 京都大学 (Kyoto University), 1989. http://hdl.handle.net/2433/86416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Enders, Joerg. "Generalizations of the reduced distance in the Ricci flow - monotonicity and applications." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mazzoni, Michele. "A fibre bundle approach to U(1) symmetries in physics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16776/.

Full text
Abstract:
In questa tesi si utilizza il formalismo dei fibrati principali per descrivere le propriet`a topologiche globali di sistemi fisici classici e quantistici che presentano simmetrie legate all’azione del gruppo U(1). Nel primo capitolo `e contenuta una esposizione della teoria matematica dei fibrati, con un particolare riguardo ai fibrati principali ed alle strutture differenziali definibili su di essi (forme differenziali di connessione e curvatura). Nel secondo capitolo si impiega il formalismo precedentemente sviluppato per trattare le propriet`a del monopolo magnetico di Dirac e si ottiene una quantizzazione della carica magnetica sulla base di considerazioni di natura topologica. Inoltre, si mostra l’impiego dei fibrati principali U(1) nella costruzione di una descrizione Lagrangiana globale per sistemi quali una particella carica nel campo del monopolo e una particella classica con spin in campo magnetico. Nel terzo capitolo, si descrive teoricamente la comparsa di una fase geometrica (fase di Berry) in sistemi quantistici che evolvono adiabaticamente nel tempo, e si fornisce un’interpretazione geometrica di tale fase come olonomia in un fibrato principale U(1). Il moto di una particella quantistica con spin in campo magnetico quasi-statico e l’effetto Aharonov-Bohm vengono presentati come esempi tipici di manifestazione di una fase geometrica.
APA, Harvard, Vancouver, ISO, and other styles
8

Vallet, Bruno. "Bases de fonctions sur les variétés." Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2008. http://tel.archives-ouvertes.fr/tel-00311743.

Full text
Abstract:
Les bases de fonctions sont des outils indispensables de la géométrie numérique puisqu'ils permettent de représenter des fonctions comme des vecteurs, c'est à dire d'appliquer les outils de l'algèbre linéaire à l'analyse fonctionnelle. Dans cette thèse, nous présentons plusieurs constructions de bases de fonctions sur des surfaces pour la géométrie numérique. Nous commençons par présenter les bases de fonctions usuelles des éléments finis et du calcul extérieur discret, leur théorie et leurs limites. Nous étudions ensuite le Laplacien et sa discrétisation, ce qui nous permettra de construire une base de fonctions particulière: les fonctions propres de l'opérateur de Laplace-Beltrami, ou harmoniques variétés. Celles-ci permettent de généraliser la transformée de Fourier et le filtrage spectral aux fonctions définies sur des surfaces. Nous présentons ensuite des applications de cette base de fonction à la géométrie numérique. En particulier, nous montrons qu'une fois calculée, cette base de fonction permet de filtrer la géométrie en temps interactif. Pour pouvoir définir des bases de fonctions de façon plus indépendante du maillage de la surface, nous nous intéressons ensuite aux paramétrisations globales, et en particulier aux champs de directions à symétries qui permettent de les définir. Ainsi, dans la dernière partie, nous étudions ces champs de directions à symétries, et en particulier leur géométrie et leur topologie. Nous proposons enfin des outils pour les construire, les manipuler et les visualiser.
APA, Harvard, Vancouver, ISO, and other styles
9

Rezende, Alex Carlucci. "A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25112014-142038/.

Full text
Abstract:
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins.<br>Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
APA, Harvard, Vancouver, ISO, and other styles
10

Rossi, Salvemini Clara. "Espace-temps globalement hyperboliques conformément plats." Phd thesis, Université d'Avignon, 2012. http://tel.archives-ouvertes.fr/tel-00934781.

Full text
Abstract:
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive
APA, Harvard, Vancouver, ISO, and other styles
11

Bergstedt, Viktor. "Spacetime as a Hamiltonian Orbit and Geroch's Theorem on the Existence of Fermions." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-432488.

Full text
Abstract:
Over a century since its inception, general relativity continues to lie at the heart of some of the most researched topics in theoretical physics. It seems likely that the coveted solutions to problems like quantum gravity are to be found in an extension of general relativity, one which may only be visible in an alternate formulation of the theory.  In this thesis we consider the possibility of casting general relativity in the form of an initial value problem where spacetime is seen as the evolution of space. This evolution is shown to be constrained and of Hamiltonian type.  Not all spacetimes are physically acceptable. To be compatible with particle physics, one would like spacetime to accommodate fermions. Here we can take comfort in Geroch’s theorem, which implies that any spacetime that admits a Hamiltonian formulation automatically supports the existence of fermions. We review the elements that go into the proof of this theorem.<br>Allmän relativitetsteori har i över hundra år legat i teoretiska fysikens framkant. Det är möjligt att lösningarna på öppna problem som kvantiseringen av gravitation går att finna i en utvidgning av allmän relativitetsteori – och kanske uppenbarar sig denna utvidgning bara ur en alternativ formulering av teorin. I den här uppsatsen formuleras allmän relativitetsteori och dess Einsteinekvationer som ett begynnelsevärdesproblem, genom vilket rumtiden kan betraktas som rummets historia. Vi visar att rummets rörelseekvationer är Hamiltons ekvationer med tvångsvillkor.  Enligt partikelfysiken bör fermioner kunna finnas till i rumtiden. Härom kan vi åberopa Gerochs sats, enligt vilken rumtider som har en Hamiltonsk formulering också medger fermioner. Vi redogör för huvuddragen i beviset av Gerochs sats.
APA, Harvard, Vancouver, ISO, and other styles
12

"A survey on compact quantum metric spaces." 2013. http://library.cuhk.edu.hk/record=b5884347.

Full text
Abstract:
Wong, Chun Yin.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 2013.<br>Includes bibliographical references (leaves 133-135).<br>Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.<br>Abstracts also in Chinese.
APA, Harvard, Vancouver, ISO, and other styles
13

Bailey, Michael. "On the Local and Global Classification of Generalized Complex Structures." Thesis, 2012. http://hdl.handle.net/1807/32657.

Full text
Abstract:
We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which has applications to string theory and mirror symmetry. Symplectic and complex geometry are special cases. In the first topic, we characterize the local structure of generalized complex manifolds by proving that a generalized complex structure near a complex point arises from a holomorphic Poisson structure. In the proof we use a smoothed Newton’s method along the lines of Nash, Moser and Conn. In the second topic, we consider whether a given regular Poisson structure and transverse complex structure come from a generalized complex structure. We give cohomological criteria, and we find some counterexamples and some unexpected examples, including a compact, regular generalized complex manifold for which nearby symplectic leaves are not symplectomorphic. In the third topic, we consider generalized complex structures with nondegenerate type change; we describe a generalized Calabi-Yau structure induced on the type change locus, and prove a local normal form theorem near this locus. Finally, in the fourth topic, we give a classification of generalized complex principal bundles satisfying a certain transversality condition; in this case, there is a generalized flat connection, and the classification involves a monodromy map to the Courant automorphism group.
APA, Harvard, Vancouver, ISO, and other styles
14

Streets, Jeffrey D. "Ricci Yang-Mills Flow." Diss., 2007. http://hdl.handle.net/10161/192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Williams, Michael Bradford. "Analysis of geometric flows, with applications to optimal homogeneous geometries." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-2820.

Full text
Abstract:
This dissertation considers several problems related to Ricci flow, including the existence and behavior of solutions. The first goal is to obtain explicit, coordinate-based descriptions of Ricci flow solutions--especially those corresponding to Ricci solitons--on two classes of nilpotent Lie groups. On the odd-dimensional classical Heisenberg groups, we determine the asymptotics of Ricci flow starting at any metric, and use Lott's blowdown method to demonstrate convergence to soliton metrics. On the groups of real unitriangular matrices, which are more complicated, we describe the solitons and corresponding solutions using a suitable ansatz. Next, we consider solsolitons involving the nilsolitons in the Heisenberg case above. This uses work of Lauret, which characterizes solsolitons as certain extensions of nilsolitons, and work of Will, which demonstrates that the space of solsolitons extensions of a given nilsoliton is parametrized by the quotient of a Grassmannian by a finite group. We determine these spaces of solsoliton extensions of Heisenberg nilsolitons, and we also explicitly describe many-parameter families of these solsolitons in dimensions greater than three. Finally, we explore Ricci flow coupled with harmonic map flow, both as it arises naturally in certain bundle constructions related to Ricci flow and as a geometric flow in its own right. In the first case, we generalize a theorem of Knopf that demonstrates convergence and stability of certain locally R[superscript N]-invariant Ricci flow solutions. In the second case, we prove a version of Hamilton's compactness theorem for the coupled flow, and then generalize it to the category of etale Riemannian groupoids. We also provide a detailed example of solutions to the flow on the three-dimensional Heisenberg group.<br>text
APA, Harvard, Vancouver, ISO, and other styles
16

Molina, Camilla. "Estructuras casi-Kähler estáticas en grupos de Lie." Bachelor's thesis, 2021. http://hdl.handle.net/11086/18118.

Full text
Abstract:
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2021.<br>Una ecuación especialmente sofisticada para evolucionar variedades casi-Kähler es el flujo de curvatura simpléctico, introducido por Streets-Tian. Los puntos fijos de este flujo, que reciben el nombre de estructuras estáticas, son objetos de gran interés y han presentado dificultades en su estudio. En dimensión 4, Streets-Tian y Kelleher probaron que estas estructuras presentan ciertas condiciones de rigidez. En este trabajo se muestra que a partir de dimensión 6 esas propiedades de rigidez ya no son válidas, y se dan los primeros ejemplos de estructuras estáticas que no son ni Kähler ni Einstein<br>A specially sophisticated equation that evolves almost-Kähler manifolds is the symplectic curvature flow, introduced by Streets-Tian. The fixed points of this flow, which are called static structures, are objects of interest whose study has presented difficulties. In dimension 4, Streets-Tian and Kelleher have proved certain conditions of rigidity that hold for these structures. We show that in dimension 6 and above, these rigidity properties are no longer valid, and we give the first examples of static structures that are not Kähler nor Einstein.<br>Fil: Molina, Camilla. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
APA, Harvard, Vancouver, ISO, and other styles
17

Haydys, Andriy. "Generalized Seiberg-Witten equations and hyperKähler geometry." Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B381-C.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography