To see the other types of publications on this topic, follow the link: Differential phase shift keying.

Journal articles on the topic 'Differential phase shift keying'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Differential phase shift keying.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Puzyrev, Pavel I. "MULTIPLE FREQUENCY-SHIFT KEYING WITH DIFFERENTIAL PHASE-SHIFT KEYING OF SUBCARRIERS." Far East Journal of Electronics and Communications 18, no. 6 (August 1, 2018): 829–40. http://dx.doi.org/10.17654/ec018060829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin Wu, 吴. 琳., 张德朝 Dechao Zhang, 张帆 Fan Zhang, 陈章渊 Zhangyuan Chen, and 徐安士 Anshi Xu. "All-optical amplitude-shift keying and differential phase-shift keying to differential phase amplitude-shift keying format combination in highly nonlinear fiber." Chinese Optics Letters 7, no. 7 (2009): 564–67. http://dx.doi.org/10.3788/col20090707.0564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kanthimathi, M., R. Amutha, and S. Anusha. "Modulation diversity for differential amplitude and phase shift keying technique." International Journal of Engineering & Technology 7, no. 1.1 (December 21, 2017): 418. http://dx.doi.org/10.14419/ijet.v7i1.1.9946.

Full text
Abstract:
Modulation diversity can reduce the bit error rate in fading channels. We make use of the advantage of modulation diversity in non-coherent differential modulation technique. Increase in modulation diversity is obtained by rotating signal constellation. Coordinate interleaved Differential amplitude and phase-shift keying modulation (DAPSK) is particularly advantageous compared to the Differential phase-shift keying (DPSK) technique. Energy optimization is done to minimize the energy consumption. Simulation results shows that the proposed differential detection for different rotation angle achieves better BER performance than constant phase differential detection with modulation diversity.The energy required to successfully transmit a bit is also reduced for proposed system compared to Differential phase shift keying based system.
APA, Harvard, Vancouver, ISO, and other styles
4

Ii, Go Yun, Thio Tzer Hwai Gilbert, and K. Dimyati. "Performance Enhancement of 10 Gbps OCDMA Networks Using DPSK and DQPSK with Unique Code-Sequence." Advanced Materials Research 974 (June 2014): 274–81. http://dx.doi.org/10.4028/www.scientific.net/amr.974.274.

Full text
Abstract:
This paper demonstrates the achievable performance enhancement in a multi-user network using optical unique code sequences. The study is conducted in a four-user Metropolitan Area Network (MAN) with a transmission rate of 10 Gbps. This paper investigates the feasibility of implementing Differential Phase Shift Keying (DPSK) and Differential Quadrature Phase Shift Keying (DQPSK) technique to replace conventional techniques such as On-Off Keying (OOK) and Amplitude Shift Keying (ASK). The performance of the integrated formulation of optical unique code sequenceswith DPSK and DQPSKtechnique is evaluated by determining the Bit Error Rate (BER) for various configurations and transmission distances up to 100 km.
APA, Harvard, Vancouver, ISO, and other styles
5

Puzyrev, P. I., and S. A. Zavyalov. "ORTHOGONAL PHASE-CODED SIGNALS WITH ADDITIONAL DIFFERENTIAL PHASE SHIFT KEYING." Dynamics of Systems, Mechanisms and Machines 6, no. 4 (2018): 061–69. http://dx.doi.org/10.25206/2310-9793-2018-6-4-61-69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, D., Q. Hu, Z. Zhang, Y. Zhang, C. Guan, W. Liu, Z. Xue, and L. Chen. "Reconfigurable crystal-based demodulator for both differential-phase-shift keying and differential-quadrature-phase-shift keying formats: principle, design and performance." IET Optoelectronics 6, no. 6 (December 1, 2012): 318–26. http://dx.doi.org/10.1049/iet-opt.2012.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, J., X. Liu, Z. Zheng, and L. An. "Scheme for differential quadrature phase-shift keying/quadrature phase-shift keying signal all-optical regeneration based on phase-sensitive amplification." IET Optoelectronics 3, no. 3 (June 1, 2009): 158–62. http://dx.doi.org/10.1049/iet-opt.2008.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kang, I., C. Xie, C. Dorrer, and A. Gnauck. "Implementations of alternate-polarisation differential-phase-shift-keying transmission." Electronics Letters 40, no. 5 (2004): 333. http://dx.doi.org/10.1049/el:20040237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dai, Bo, Zhensen Gao, Xu Wang, Nobuyuki Kataoka, and Naoya Wada. "A Novel Optical Orthogonal Modulation Format Based on Differential Phase-Shift Keying and Code-Shift Keying." IEEE Photonics Technology Letters 23, no. 17 (September 2011): 1210–12. http://dx.doi.org/10.1109/lpt.2011.2158602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deng, Ning, Chun-Kit Chan, and Lian-Kuan Chen. "Characterization of the performance of optical amplitude-shift keying–differential phase-shift keying orthogonally modulated signals." Optics Letters 30, no. 8 (April 15, 2005): 818. http://dx.doi.org/10.1364/ol.30.000818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Qin, Dong, Yuhao Wang, and Tianqing Zhou. "Average SEP of AF Relaying in Nakagami-m Fading Environments." Wireless Communications and Mobile Computing 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/6581827.

Full text
Abstract:
This paper is devoted to an investigation of an exact average symbol error probability (SEP) for amplify and forward (AF) relaying in independent Nakagami-m fading environments with a nonnegative integer plus one-half m, which covers many actual scenarios, such as one-side Gaussian distribution (m=0.5). Using moment generating function approach, the closed-form SEP is expressed in the form of Lauricella multivariate hypergeometric function. Four modulation modes are considered: rectangular quadrature amplitude modulation (QAM), M-ary phase shift keying (MPSK), M-ary differential phase shift keying (MDPSK), and π/4 differential quaternary phase shift keying (DQPSK). The result is very simple and general for a nonnegative integer plus one-half m, which covers the same range as integer m. The tightness of theoretical analysis is confirmed by computer simulation results.
APA, Harvard, Vancouver, ISO, and other styles
12

Luhanga, Matthew L. "Packet Error Probability for Diversity Systems in Slow Rayleigh Fading and Gaussian Noise." International Journal of Electrical Engineering & Education 23, no. 3 (July 1986): 239–44. http://dx.doi.org/10.1177/002072098602300309.

Full text
Abstract:
Analytical results on packet error probability for noncoherent frequency-shift-keying (NCFSK) and differential phase-shift-keying (DPSK) systems with diversity reception operating over slow Rayleigh fading channels with Gaussian noise are derived. Expressions obtained are applicable to two linear combining schemes: selection combining and maximal-ratio combining.
APA, Harvard, Vancouver, ISO, and other styles
13

A. Eid, Mahmoud M., Ashraf S. Seliem, Ahmed Nabih Zaki Rashed, Abd El-Naser A. Mohammed, Mohamed Yassin Ali, and Shaimaa S. Abaza. "High modulated soliton power propagation interaction with optical fiber and optical wireless communication channels." Indonesian Journal of Electrical Engineering and Computer Science 21, no. 3 (March 10, 2021): 1575. http://dx.doi.org/10.11591/ijeecs.v21.i3.pp1575-1583.

Full text
Abstract:
<p><span id="docs-internal-guid-52da184f-7fff-738a-f0e7-e8dd779e097b"><span>This paper has presented high modulated soliton power transmission interaction with optical fiber and optical wireless communication channels at flow rate of 40 Gbps and 20 km link range. The proposed modulation schemes are continuous phase frequency shift keying (CPFSK), Quadrature amplitude modulation (QAM), differential phase shift keying (DPSK), frequency shift keying (FSK), pulse amplitude modulation (PAM), minimum shift keying (MSK), and optical quadrature phase shift keying (OQPSK). CPFSK has presented better performance than other proposed modulation schemes for both optical fiber and optical wireless communication channels. The enhancement of optical signal/noise ratio at fiber/wireless channel, received electrical power and signal/noise ratio at optical receiver with increase of bits per symbol for different proposed modulation schemes except for CPFSK scheme. Therefore it is evident that CPFSK modulation scheme is more efficient and better performance than other modulation schemes for different communication channels. The obtained results are simulated with optisystem program version 13. </span></span></p>
APA, Harvard, Vancouver, ISO, and other styles
14

Dwarika, K., and H. Xu. "Differential Full Diversity Spatial Modulation using Amplitude Phase Shift Keying." Radioengineering 27, no. 1 (April 13, 2018): 151–58. http://dx.doi.org/10.13164/re.2018.0151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Xu, C., X. Liu, and X. Wei. "Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmissions." IEEE Journal of Selected Topics in Quantum Electronics 10, no. 2 (March 2004): 281–93. http://dx.doi.org/10.1109/jstqe.2004.827835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jeon, Eun-Hye, Taek-Ik Kwon, and Ki-Man Kim. "Receiver design for differential phase-shift keying underwater acoustic communication." Journal of the Acoustical Society of Korea 35, no. 5 (September 30, 2016): 368–74. http://dx.doi.org/10.7776/ask.2016.35.5.368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lee, Min Won, Birgit Stiller, Jérôme Hauden, Hervé Maillotte, Carole Roch, Luc Thevenaz, and Thibaut Sylvestre. "Differential Phase-Shift-Keying Technique-Based Brillouin Echo-Distributed Sensing." IEEE Photonics Technology Letters 24, no. 1 (January 2012): 79–81. http://dx.doi.org/10.1109/lpt.2011.2172255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Bo, Lianshan Yan, Irfan Fazal, Lin Zhang, Alan E. Willner, Zhaoming Zhu, and Daniel J. Gauthier. "Slow light on Gbit/s differential-phase-shift-keying signals." Optics Express 15, no. 4 (February 19, 2007): 1878. http://dx.doi.org/10.1364/oe.15.001878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nazarathy, Moshe, Xiang Liu, Louis Christen, Yannick K. Lize, and Alan E. Willner. "Self-Coherent Multisymbol Detection of Optical Differential Phase-Shift Keying." Journal of Lightwave Technology 26, no. 13 (July 2008): 1921–34. http://dx.doi.org/10.1109/jlt.2007.912055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mlejnek, M. "Balanced differential phase-shift keying detector performance: an analytical study." Optics Letters 31, no. 15 (July 10, 2006): 2266. http://dx.doi.org/10.1364/ol.31.002266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Al- Azzawi, Fatima faydhe, Faeza Abas Abid, and Zainab faydhe Al-Azzawi. "Performance Comparison between DPSK and OQPSK modulation approaches in multi environments channels with Matlab Simulink models." Wasit Journal of Engineering Sciences 7, no. 1 (April 15, 2019): 30–39. http://dx.doi.org/10.31185/ejuow.vol7.iss1.112.

Full text
Abstract:
Phase shift keying modulation approaches are widely used in the communication industry. Differential phase shift keying (DPSK) and Offset Quadrature phase shift keying (OQPSK) schemes are chosen to be investigated is multi environment channels, where both systems are designed using MATLAB Simulink and tested. Cross talk and unity of signals generated from DPSK and OQPSK are examined using Cross-correlation and auto-correlation, respectively. In this research a proposed system included improvement in bit error rate (BER) of both systems in the additive white Gaussian Noise (AWGN) channel, by using the convolutional and block codes, by increasing the ratio of energy in the specular component to the energy in the diffuse component (k) and the diversity order BER in the fading channels will be improved in both systems.
APA, Harvard, Vancouver, ISO, and other styles
22

Ahmed, Md Firoz, Md Faysal Ahmed, and Abu Zafor Md. Touhidul Islam. "Comparison of Bit Error Rate Performance of Various Digital Modulation Schemes over AWGN and Rayleigh Fading Channels using Simulink." International Journal of Ambient Systems and Applications 9, no. 2 (June 30, 2021): 7–16. http://dx.doi.org/10.5121/ijasa.2021.9202.

Full text
Abstract:
Digital modulation increases information capacity, data security, and system availability while maintaining high communication quality. As a result, digital modulation techniques are in higher demand than analog modulation techniques due to their ability to transmit larger amounts of data. Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), and Quadrature Amplitude Modulation (QAM) are critical components of current communications systems development, particularly for broadband wireless communications. In this paper, the comparison of bit error rate performance of different modulation schemes (BPSK, QPSK, and16-QAM) and various equalization techniques such as constant modulus algorithm (CMA) and maximum likelihood sequence estimate (MLSE) for the AWGN and Rayleigh fading channels is analyzed using Simulink. BPSK outperforms QPSK and 16-QAM when compared to the other two digital modulation schemes. Among the three digital modulation schemes, BPSK is showing better performance as compared to QPSK and 16-QAM.
APA, Harvard, Vancouver, ISO, and other styles
23

Kistanova, V. A., and V. I. Oganov. "Phase control algorithm for demodulation of binary phase-shift keying signals." Radio industry 28, no. 4 (November 27, 2018): 15–20. http://dx.doi.org/10.21778/2413-9599-2018-28-4-15-20.

Full text
Abstract:
The purpose of this paper is to synthesize an algorithm for coherent digital demodulation of non-uniformly distributed radio signals with absolute two-position phase shift keying, which has a small computational complexity, and to develop a miniature low-power demodulator on its basis. The relevance of the study is determined by the absence of similar devices in the Russian radio electronic market. The algorithm is based on digital phase-locked-loop frequency control. Its basic idea is to retain the optimal amplitude ratio between the phase quadrature of the received signal using a proportional-integral- differential controller. A digital device with the stated technical characteristics was obtained as a result of the study.
APA, Harvard, Vancouver, ISO, and other styles
24

Ikeda, Toshio, Tadaaki Uchida, and Kohji Toda. "An Ultrasonic Method of Constructing a Differential Phase Shift Keying System." Japanese Journal of Applied Physics 31, S1 (January 1, 1992): 201. http://dx.doi.org/10.7567/jjaps.31s1.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lin Xu, Chao Li, Chiyan Wong, and Hon Ki Tsang. "Optical Differential-Phase-Shift-Keying Demodulation Using a Silicon Microring Resonator." IEEE Photonics Technology Letters 21, no. 5 (March 2009): 295–97. http://dx.doi.org/10.1109/lpt.2008.2010873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ulmer, Todd G., Scott R. Henion, Frederick G. Walther, and Peter A. Schulz. "Differential Phase-Shift Keying in Spatial Diversity Transmitters for Fade Mitigation." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (September 2010): 1091–98. http://dx.doi.org/10.1109/jstqe.2009.2036861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Han, Yan, and Guifang Li. "Direct detection differential polarization-phase-shift keying based on Jones vector." Optics Express 12, no. 24 (2004): 5821. http://dx.doi.org/10.1364/opex.12.005821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Abe, Masami, Haruhiro Shiino, and Yasuo Shoji. "A Soft Decision Decoding Method in the Differential Phase Shift Keying." IEEJ Transactions on Electronics, Information and Systems 111, no. 11 (1991): 563–68. http://dx.doi.org/10.1541/ieejeiss1987.111.11_563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Walsh, Anthony J., Haymen Shams, James Mountjoy, Anthony Fagan, Jian Zhao, Liam P. Barry, and Andrew D. Ellis. "Demonstrating Doubly-Differential Quadrature Phase Shift Keying in the Optical Domain." IEEE Photonics Technology Letters 25, no. 11 (June 2013): 1054–57. http://dx.doi.org/10.1109/lpt.2013.2257726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Malouin, C., J. Bennike, and T. J. Schmidt. "Differential Phase-Shift Keying Receiver Design Applied to Strong Optical Filtering." Journal of Lightwave Technology 25, no. 11 (November 2007): 3536–42. http://dx.doi.org/10.1109/jlt.2007.907750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Han, Y., C. Kim, and G. Li. "Simplified receiver implementation for optical differential 8-level phase-shift keying." Electronics Letters 40, no. 21 (2004): 1372. http://dx.doi.org/10.1049/el:20046411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kumar, Shiva. "Analysis of intrachannel impairments in differential phase-shift keying transmission systems." Optics Letters 30, no. 16 (August 15, 2005): 2053. http://dx.doi.org/10.1364/ol.30.002053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Eslami, Mansour, and Reza Kheradmand. "High bit-rate cavity soliton-based differential phase-shift-keying demodulator." Journal of Modern Optics 61, no. 2 (January 16, 2014): 116–21. http://dx.doi.org/10.1080/09500340.2013.868546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Liu, Niu, Julian Cheng, and Jonathan Francis Holzman. "Undersampled differential phase shift on-off keying for optical camera communications." Journal of Communications and Information Networks 2, no. 4 (December 2017): 47–56. http://dx.doi.org/10.1007/s41650-017-0042-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Alekseev, A. E., V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin. "Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses." Quantum Electronics 44, no. 10 (October 29, 2014): 965–69. http://dx.doi.org/10.1070/qe2014v044n10abeh015470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Johannisson, Pontus, Göran Adolfsson, and Magnus Karlsson. "Suppression of phase error in differential phase-shift keying data by amplitude regeneration." Optics Letters 31, no. 10 (May 15, 2006): 1385. http://dx.doi.org/10.1364/ol.31.001385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mizutani, Koichi, and Kohji Toda. "A Differential Phase Shift Keying Demodulator Using a Shear Horizontal Wave Device." Japanese Journal of Applied Physics 26, S2 (January 1, 1987): 213. http://dx.doi.org/10.7567/jjaps.26s2.213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ridgway, Richard W., David W. Nippa, and Stephen Yen. "Data Transmission Using Differential Phase-Shift Keying on a 92 GHz Carrier." IEEE Transactions on Microwave Theory and Techniques 58, no. 11 (November 2010): 3117–26. http://dx.doi.org/10.1109/tmtt.2010.2076670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ahmed, Asif, Hao Yang, Jacob M. Rothenberg, Brian Souhan, Zhao Wang, Nathan C. Abrams, Xiang Meng, et al. "Differential phase-shift-keying demodulation by coherent perfect absorption in silicon photonics." Optics Letters 43, no. 16 (August 15, 2018): 4061. http://dx.doi.org/10.1364/ol.43.004061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ho, Keang-Po. "Exact analysis of a balanced receiver for differential phase-shift keying signals." Optics Letters 32, no. 5 (February 2, 2007): 472. http://dx.doi.org/10.1364/ol.32.000472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bochkov, G. N., K. V. Gorokhov, and A. V. Kolobkov. "Polyspectral analysis and optimization of the frequency-domain differential phase-shift keying." Radiophysics and Quantum Electronics 53, no. 8 (January 28, 2011): 488–504. http://dx.doi.org/10.1007/s11141-011-9245-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jose, Deepak, and Sameer S. M. "Low complexity detector for amplitude phase shift keying-based differential spatial modulation." IET Communications 14, no. 20 (December 15, 2020): 3669–75. http://dx.doi.org/10.1049/iet-com.2020.0120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, H., C. R. Doerr, R. Pafchek, L. W. Stulz, and P. Bernasconi. "Polarisation-mode dispersion impairments in direct-detection differential phase-shift-keying systems." Electronics Letters 38, no. 18 (2002): 1047. http://dx.doi.org/10.1049/el:20020601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Calvani, R., R. Caponi, and F. Cisternino. "Polarisation phase-shift keying: a coherent transmission technique with differential heterodyne detection." Electronics Letters 24, no. 10 (May 12, 1988): 642–43. http://dx.doi.org/10.1049/el:19880435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shao, Yufeng, Shuangchun Wen, Lin Chen, Ying Li, and Huiwen Xu. "A staggered differential phase-shift keying modulation format for 100Gbit/s applications." Optics Express 16, no. 17 (August 11, 2008): 12937. http://dx.doi.org/10.1364/oe.16.012937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Moeller, F., J. Enderlein, M. A. Belkerdid, D. C. Malocha, and W. Buff. "Direct sequence spread spectrum differential phase shift keying SAW correlator on GaAs." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 46, no. 4 (July 1999): 842–48. http://dx.doi.org/10.1109/58.775648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tamura, K., S. B. Alexander, V. W. S. Chan, and D. M. Boroson. "Phase-noise-canceled differential phase-shift-keying (PNC-DPSK) for coherent optical communication systems." Journal of Lightwave Technology 8, no. 2 (1990): 190–201. http://dx.doi.org/10.1109/50.47871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Jian, Zahra Bakhtiari, Scott R. Nuccio, Omer F. Yilmaz, Xiaoxia Wu, and Alan E. Willner. "Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals." Optics Letters 35, no. 17 (August 31, 2010): 2979. http://dx.doi.org/10.1364/ol.35.002979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Croussore, Kevin, Cheolhwan Kim, and Guifang Li. "All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification." Optics Letters 29, no. 20 (October 15, 2004): 2357. http://dx.doi.org/10.1364/ol.29.002357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Yun, Shanghong Zhao, Zizheng Gong, Jing Zhao, Chen Dong, and Xuan Li. "Displacement damage in bit error ratio performance of on–off keying, pulse position modulation, differential phase shift keying, and homodyne binary phase-shift keying-based optical intersatellite communication system." Applied Optics 55, no. 11 (April 8, 2016): 3069. http://dx.doi.org/10.1364/ao.55.003069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography