Academic literature on the topic 'Differentialgeometrie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Differentialgeometrie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Differentialgeometrie"
Biquard, Olivier, Simon Brendle, and Bernhard Leeb. "Differentialgeometrie im Großen." Oberwolfach Reports 10, no. 3 (2013): 1929–74. http://dx.doi.org/10.4171/owr/2013/33.
Full textBesson, Gérard, Ursula Hamenstädt, and Michael Kapovich. "Differentialgeometrie im Großen." Oberwolfach Reports 12, no. 3 (2015): 1759–807. http://dx.doi.org/10.4171/owr/2015/31.
Full textBesson, Gérard, Ursula Hamenstädt, Michael Kapovich, and Ben Weinkove. "Differentialgeometrie im Großen." Oberwolfach Reports 14, no. 2 (April 27, 2018): 1917–71. http://dx.doi.org/10.4171/owr/2017/31.
Full textBesson, Gérard, Ursula Hamenstädt, Michael Kapovich, and Ben Weinkove. "Differentialgeometrie im Großen." Oberwolfach Reports 16, no. 2 (June 3, 2020): 1791–839. http://dx.doi.org/10.4171/owr/2019/30.
Full textBamler, Richard, Ursula Hamenstädt, Urs Lang, and Ben Weinkove. "Differentialgeometrie im Grossen." Oberwolfach Reports 18, no. 3 (November 25, 2022): 1685–734. http://dx.doi.org/10.4171/owr/2021/32.
Full textBurghardt, R. "Gruppenwirkung und Differentialgeometrie." Annalen der Physik 502, no. 5 (1990): 383–90. http://dx.doi.org/10.1002/andp.19905020503.
Full textBamler, Richard, Otis Chodosh, Urs Lang, and Ben Weinkove. "Differentialgeometrie im Grossen." Oberwolfach Reports 20, no. 3 (April 18, 2024): 1617–70. http://dx.doi.org/10.4171/owr/2023/29.
Full textVincze, Stefan. "Bemerkungen zur Differentialgeometrie der Raumkurven." Publicationes Mathematicae Debrecen 4, no. 1-2 (July 1, 2022): 61–69. http://dx.doi.org/10.5486/pmd.1955.4.1-2.07.
Full textJankovský, Zdeněk. "Laguerre's differential geometry and kinematics." Mathematica Bohemica 120, no. 1 (1995): 29–40. http://dx.doi.org/10.21136/mb.1995.125894.
Full textVoss, Konrad. "Einige Eindeutigkeitssätze in der Affinen Differentialgeometrie." Results in Mathematics 13, no. 3-4 (May 1988): 379–85. http://dx.doi.org/10.1007/bf03323253.
Full textDissertations / Theses on the topic "Differentialgeometrie"
Meyer, Arnd, and Andreas Steinbrecher. "Grundlagen der Differentialgeometrie." Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000905.
Full textHamann, Marco. "Zur Differentialgeometrie zweiparametriger Geradenmengen im KLEINschen Modell." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974391425.
Full textHamann, Marco. "Zur Differentialgeometrie zweiparametriger Geradenmengen im KLEINschen Modell." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1111593005151-37742.
Full textIn the available work line congruences of the projectively extended three-dimensional euclidean space will be analysed. Following to J. PLÜCKER lines can be seen as basic elements of an line space like in the same way points in a point-space. Taking this fact in consideration a "natural" handling with line congruences might be interesting and reasonable. A special detail in the thesis is the question to minimal congruences in the set of lines of the projectively extended euclidean three-space. It can also be seen as an analogous problem in the geometry of lines which can be find in the differential geometry of surfaces. In this case the line congruences are similar to the surfaces of the three-dimensional (point-)space. The phrase "minimal" means in the line space the connection to the minimal surfaces in the differential geometry. These questions offer in line geometry demonstrative interpretation possibilities if a point-model in the line space exists. One-parameter manifolds of lines (rule surfaces) can be seen in this ambiance as curves and line congruences as two dimensional surfaces. The four-parametric set of lines in the projectively extended three-dimensional euclidian space is in this model a quadric of the index 2 in a real projective five-dimensional space, the so called KLEIN-quadric. The changing of the model is managed by the KLEIN-mapping
Fels, Gregor. "Differentialgeometrische Charaktersisierung invarianter Holomorphiegebiete /." Bochum : Ruhr-Universität, Inst. für Mathematik, 1994. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=006663938&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textWelk, Martin. "Kovariante Differentialrechnung auf Quantensphären ungerader Dimension ein Beitrag zur nichtkommutativen Geometrie homogener Quantenräume /." [S.l. : s.n.], 1998. http://dol.uni-leipzig.de/pub/1999-3.
Full textHeck, Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." [S.l. : s.n.], 1993. http://deposit.ddb.de/cgi-bin/dokserv?idn=962822760.
Full textHeck and Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." Phd thesis, Universitaet Stuttgart, 1993. http://elib.uni-stuttgart.de/opus/volltexte/2001/916/index.html.
Full textSchöberl, Markus. "Geometry and control of mechanical systems an Eulerian, Lagrangian and Hamiltonian approach." Aachen Shaker, 2007. http://d-nb.info/989019306/04.
Full textDittrich, Jens. "Über globale und lokale Einbettungen." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59884.
Full textDemircioglu, Aydin. "Reconstruction of deligne classes and cocycles." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1375/.
Full textIn this thesis we mainly generalize two theorems from Mackaay-Picken and Picken (2002, 2004). In the first paper, Mackaay and Picken show that there is a bijective correspondence between Deligne 2-classes $xi in check{H}^2(M,mathcal{D}^2)$ and holonomy maps from the second thin-homotopy group $pi_2^2(M)$ to $U(1)$. In the second one, a generalization of this theorem to manifolds with boundaries is given: Picken shows that there is a bijection between Deligne 2-cocycles and a certain variant of 2-dimensional topological quantum field theories. In this thesis we show that these two theorems hold in every dimension. We consider first the holonomy case, and by using simplicial methods we can prove that the group of smooth Deligne $d$-classes is isomorphic to the group of smooth holonomy maps from the $d^{th}$ thin-homotopy group $pi_d^d(M)$ to $U(1)$, if $M$ is $(d-1)$-connected. We contrast this with a result of Gajer (1999). Gajer showed that Deligne $d$-classes can be reconstructed by a different class of holonomy maps, which not only include holonomies along spheres, but also along general $d$-manifolds in $M$. This approach does not require the manifold $M$ to be $(d-1)$-connected. We show that in the case of flat Deligne $d$-classes, our result differs from Gajers, if $M$ is not $(d-1)$-connected, but only $(d-2)$-connected. Stiefel manifolds do have this property, and if one applies our theorem to these and compare the result with that of Gajers theorem, it is revealed that our theorem reconstructs too many Deligne classes. This means, that our reconstruction theorem cannot live without the extra assumption on the manifold $M$, that is our reconstruction needs less informations about the holonomy of $d$-manifolds in $M$ at the price of assuming $M$ to be $(d-1)$-connected. We continue to show, that also the second theorem can be generalized: By introducing the concept of Picken-type topological quantum field theory in arbitrary dimensions, we can show that every Deligne $d$-cocycle induces such a $d$-dimensional field theory with two special properties, namely thin-invariance and smoothness. We show that any $d$-dimensional topological quantum field theory with these two properties gives rise to a Deligne $d$-cocycle and verify that this construction is surjective and injective, that is both groups are isomorphic.
Books on the topic "Differentialgeometrie"
Kühnel, Wolfgang. Differentialgeometrie. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-658-00615-0.
Full textKühnel, Wolfgang. Differentialgeometrie. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-93981-4.
Full textKühnel, Wolfgang. Differentialgeometrie. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9655-1.
Full textKühnel, Wolfgang. Differentialgeometrie. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-92808-5.
Full textWünsch, Volkmar. Differentialgeometrie. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-663-05981-3.
Full textKühnel, Wolfgang. Differentialgeometrie. Wiesbaden: Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-93422-2.
Full textJost, Jürgen. Differentialgeometrie und Minimalflächen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06718-5.
Full textEschenburg, Jost-Hinrich, and Jürgen Jost. Differentialgeometrie und Minimalflächen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-38522-3.
Full textMalkowsky, Eberhard, and Wolfgang Nickel. Computergrafik in der Differentialgeometrie. Edited by Kurt Endl. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-663-05912-7.
Full textNakahara, Mikio. Differentialgeometrie, Topologie und Physik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45300-1.
Full textBook chapters on the topic "Differentialgeometrie"
Hilbert, David, and Stephan Cohn-Vossen. "Differentialgeometrie." In Anschauliche Geometrie, 151–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-19948-6_4.
Full textDombrowski, Peter. "Differentialgeometrie." In Ein Jahrhundert Mathematik 1890–1990, 323–60. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-80265-1_7.
Full textBrauch, Wolfgang, Hans-Joachim Dreyer, and Wolfhart Haacke. "Differentialgeometrie." In Mathematik für Ingenieure, 436–60. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-91789-8_8.
Full textBrauch, Wolfgang, Hans-Joachim Dreyer, and Wolfhart Haacke. "Differentialgeometrie." In Mathematik für Ingenieure, 436–60. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-91830-7_8.
Full textBrauch, Wolfgang, Hans-Joachim Dreyer, and Wolfhart Haacke. "Differentialgeometrie." In Mathematik für Ingenieure, 436–60. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-91831-4_8.
Full textdo Carmo, Manfredo P., Gerd Fischer, Ulrich Pinkall, and Helmut Reckziegel. "Differentialgeometrie." In Mathematische Modelle, 25–51. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-322-85045-4_3.
Full textFischer, Helmut, and Helmut Kaul. "Differentialgeometrie." In Mathematik für Physiker Band 3, 189–320. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53969-9_2.
Full textTaschner, Rudolf. "Differentialgeometrie." In Anwendungsorientierte Mathematik Band für ingenieurwissenschaftliche Fachrichtungen, 74–119. München: Carl Hanser Verlag GmbH & Co. KG, 2014. http://dx.doi.org/10.3139/9783446441668.002.
Full textGärtner, Karl-Heinz, Margitta Bellmann, Werner Lyska, and Roland Schmieder. "Differentialgeometrie." In Mathematik für Ingenieure und Naturwissenschaftler, 146–68. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-81034-2_4.
Full textTaschner, Rudolf. "Differentialgeometrie." In Anwendungsorientierte Mathematik, 74–119. 2nd ed. München: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.3139/9783446472020.002.
Full textConference papers on the topic "Differentialgeometrie"
Terze, Zdravko, Joris Naudet, and Dirk Lefeber. "Constraint Gradient Projective Method for Stabilized Dynamic Simulation of Constrained Multibody Systems." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48314.
Full text