Dissertations / Theses on the topic 'Differentialgeometrie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Differentialgeometrie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Meyer, Arnd, and Andreas Steinbrecher. "Grundlagen der Differentialgeometrie." Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000905.
Full textHamann, Marco. "Zur Differentialgeometrie zweiparametriger Geradenmengen im KLEINschen Modell." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974391425.
Full textHamann, Marco. "Zur Differentialgeometrie zweiparametriger Geradenmengen im KLEINschen Modell." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1111593005151-37742.
Full textIn the available work line congruences of the projectively extended three-dimensional euclidean space will be analysed. Following to J. PLÜCKER lines can be seen as basic elements of an line space like in the same way points in a point-space. Taking this fact in consideration a "natural" handling with line congruences might be interesting and reasonable. A special detail in the thesis is the question to minimal congruences in the set of lines of the projectively extended euclidean three-space. It can also be seen as an analogous problem in the geometry of lines which can be find in the differential geometry of surfaces. In this case the line congruences are similar to the surfaces of the three-dimensional (point-)space. The phrase "minimal" means in the line space the connection to the minimal surfaces in the differential geometry. These questions offer in line geometry demonstrative interpretation possibilities if a point-model in the line space exists. One-parameter manifolds of lines (rule surfaces) can be seen in this ambiance as curves and line congruences as two dimensional surfaces. The four-parametric set of lines in the projectively extended three-dimensional euclidian space is in this model a quadric of the index 2 in a real projective five-dimensional space, the so called KLEIN-quadric. The changing of the model is managed by the KLEIN-mapping
Fels, Gregor. "Differentialgeometrische Charaktersisierung invarianter Holomorphiegebiete /." Bochum : Ruhr-Universität, Inst. für Mathematik, 1994. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=006663938&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textWelk, Martin. "Kovariante Differentialrechnung auf Quantensphären ungerader Dimension ein Beitrag zur nichtkommutativen Geometrie homogener Quantenräume /." [S.l. : s.n.], 1998. http://dol.uni-leipzig.de/pub/1999-3.
Full textHeck, Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." [S.l. : s.n.], 1993. http://deposit.ddb.de/cgi-bin/dokserv?idn=962822760.
Full textHeck and Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." Phd thesis, Universitaet Stuttgart, 1993. http://elib.uni-stuttgart.de/opus/volltexte/2001/916/index.html.
Full textSchöberl, Markus. "Geometry and control of mechanical systems an Eulerian, Lagrangian and Hamiltonian approach." Aachen Shaker, 2007. http://d-nb.info/989019306/04.
Full textDittrich, Jens. "Über globale und lokale Einbettungen." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59884.
Full textDemircioglu, Aydin. "Reconstruction of deligne classes and cocycles." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1375/.
Full textIn this thesis we mainly generalize two theorems from Mackaay-Picken and Picken (2002, 2004). In the first paper, Mackaay and Picken show that there is a bijective correspondence between Deligne 2-classes $xi in check{H}^2(M,mathcal{D}^2)$ and holonomy maps from the second thin-homotopy group $pi_2^2(M)$ to $U(1)$. In the second one, a generalization of this theorem to manifolds with boundaries is given: Picken shows that there is a bijection between Deligne 2-cocycles and a certain variant of 2-dimensional topological quantum field theories. In this thesis we show that these two theorems hold in every dimension. We consider first the holonomy case, and by using simplicial methods we can prove that the group of smooth Deligne $d$-classes is isomorphic to the group of smooth holonomy maps from the $d^{th}$ thin-homotopy group $pi_d^d(M)$ to $U(1)$, if $M$ is $(d-1)$-connected. We contrast this with a result of Gajer (1999). Gajer showed that Deligne $d$-classes can be reconstructed by a different class of holonomy maps, which not only include holonomies along spheres, but also along general $d$-manifolds in $M$. This approach does not require the manifold $M$ to be $(d-1)$-connected. We show that in the case of flat Deligne $d$-classes, our result differs from Gajers, if $M$ is not $(d-1)$-connected, but only $(d-2)$-connected. Stiefel manifolds do have this property, and if one applies our theorem to these and compare the result with that of Gajers theorem, it is revealed that our theorem reconstructs too many Deligne classes. This means, that our reconstruction theorem cannot live without the extra assumption on the manifold $M$, that is our reconstruction needs less informations about the holonomy of $d$-manifolds in $M$ at the price of assuming $M$ to be $(d-1)$-connected. We continue to show, that also the second theorem can be generalized: By introducing the concept of Picken-type topological quantum field theory in arbitrary dimensions, we can show that every Deligne $d$-cocycle induces such a $d$-dimensional field theory with two special properties, namely thin-invariance and smoothness. We show that any $d$-dimensional topological quantum field theory with these two properties gives rise to a Deligne $d$-cocycle and verify that this construction is surjective and injective, that is both groups are isomorphic.
Kolassa, Stephan. "C*-invariante elliptische Faserungen." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10047893.
Full textWiehe, Martin. "Deformations in affine hypersurface theory /." Aachen : Shaker, 1999. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=008461776&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textKhattab, Ashraf. "Flecnodal and LIE-curves of ruled surfaces." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1133965882370-89507.
Full textRegelflächen des projektiven 3-Raums erscheinen, als (eindimensionalen) Geradenmengen aufgefasst, im bekannten KLEINschen Punktmodell der Geradenmenge vom projektiven 3-Raum als Kurven einer Hyperquadrik in einem projektiven 5-Raum. Die Schmiegräume einer solchen Kurve werden im projektiven 3-Raum durch Räume linearer Komplexe repräsentiert. Diejenigen Punkte einer Erzeugende e der Regelfläche, in denen die Tangentenbüschel gleichzeitig auch Komplexgeradenbüschel im begleitenden Schmiegkomplex von e sind, heißen LIE-Punkte von e. Die LIE-Punkte erfüllen zwei (reelle oder konjugiert imaginäre) Kurvenzüge auf der Regelfläche, die LIE-Kurven. Die Träger des Schmieg-3-Raums der Regelfläche längs einer reguläre nichttorsalen Erzeugende e sind zwei, eine oder null Geraden im Schmiegregulus. Sofern diese Geraden existieren, nennt man sie die Fleknodaltangenten der Regelfläche. Auf hyperbolischen Regelflächen bilden die Berührpunkte der Fleknodaltangenten zwei projektiv ausgezeichnete Kurven, die Fleknodalkurven. In der vorliegenden Arbeit stellen wir die unterschiedlichen Behandelungen diesen ausgezeichneten Kurven in der Geschichte dar, und geben wir eine neue explizite Berechnung von den Fleknodal- bzw. LIE-Punkte auf der Basis einer PLÜCKER-Koordinaten-Darstellung der Regelfläche. Außerdem untersuchen wir die Fragestellungen, die man bekommt, wenn man versucht, dass das paarweise auftreten der LIE-Kurven irgendwie in Analogie zum klassischen euklidischen BERTRAND-Kurvenpaar zu stellen. Z.B. lässt sich die Frage nach Regelflächen, deren LIE-Kurven Orthogonaltrajektorien der Erzeugenden sind, hier beantwortet
Bögner, Heidrun. "Vorgespannte Konstruktionen aus beschichteten Geweben und die Rolle des Schubverhaltens bei der Bildung von zweifach gekrümmten Flächen aus ebenen Streifen." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11244199.
Full textBertram, Wolfgang. "The geometry of Jordan and Lie structures /." Berlin [u.a.] : Springer, 2000. http://www.loc.gov/catdir/enhancements/fy0816/00066150-d.html.
Full textDiemer, Tammo. "Conformal geometry, representation theory and linear fields." Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62770144.html.
Full textMeyer, Arnd. "The linear Naghdi shell equation in a coordinate free description." Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-127368.
Full textBaumann, Markus. "Newton's Method for Path-Following Problems on Manifolds." Doctoral thesis, kostenfrei, 2008. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2008/2809/.
Full textKarlsson, Patrik. "Diskret krökning, en jämförelse." Thesis, Linköpings universitet, Matematiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78109.
Full textIn this thesis we analyze and compare two different methods for approximating the Gauss and mean curvature on a surface, which is given as a set of points. It is important to find a method that agrees well with the analytic Gauss and mean curvatures and guarantees robust estimations. There is a great interest in Gauss and mean curvature since these two curvatures give information about the local geometry of the surface around the point at which these curvatures are calculated. The thesis begins with a short overview of differential theory and then the methods are explained and described. The reason for this is to give the reader an understanding of the theory before explaining the methods. The first method is called Bézier surfaces, which interpolates the given points. These surfaces are differentiable which makes it possible to approximate the Gauss and mean curvature, and are therefore very well suited for our problem. The second method comes from the research article ``Discrete Differential-Geometry Operators for Triangulated 2-Manifolds'' by Mark Meyer, Mathieu Desbrun, Peter Schröder and Alan H. Barr. Their algorithm requires a triangulated surface, which itself is a hard problem to solve (at least if one has requirements on the triangulation). Their approximations of the Gauss and mean curvatures use a well chosen area around the point, and the Gauss curvature also makes use of the Gauss-Bonnet theorem. My simulations show that Bézier surfaces approximate both Gauss and mean curvature well, and the approximations seem to converge to the analytic value when the information gets better. The articles algorithm also works well for approximating both curvatures, though this method seems to depend somewhat on the triangulation. This gives some requirements on the triangulation and will therefore be a harder problem to solve. The approximations do not converge when given a triangulation with obtuse triangles, though it shows signs to do so.
Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
Pedersen, Morten Akhøj. "Méthodes riemanniennes et sous-riemanniennes pour la réduction de dimension." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4087.
Full textIn this thesis, we propose new methods for dimension reduction based on differential geometry, that is, finding a representation of a set of observations in a space of lower dimension than the original data space. Methods for dimension reduction form a cornerstone of statistics, and thus have a very wide range of applications. For instance, a lower dimensional representation of a data set allows visualization and is often necessary for subsequent statistical analyses. In ordinary Euclidean statistics, the data belong to a vector space and the lower dimensional space might be a linear subspace or a non-linear submanifold approximating the observations. The study of such smooth manifolds, differential geometry, naturally plays an important role in this last case, or when the data space is itself a known manifold. Methods for analysing this type of data form the field of geometric statistics. In this setting, the approximating space found by dimension reduction is naturally a submanifold of the given manifold. The starting point of this thesis is geometric statistics for observations belonging to a known Riemannian manifold, but parts of our work form a contribution even in the case of data belonging to Euclidean space, mathbb{R}^d.An important example of manifold valued data is shapes, in our case discrete or continuous curves or surfaces. In evolutionary biology, researchers are interested in studying reasons for and implications of morphological differences between species. Shape is one way to formalize morphology. This application motivates the first main contribution of the thesis. We generalize a dimension reduction method used in evolutionary biology, phylogenetic principal component analysis (P-PCA), to work for data on a Riemannian manifold - so that it can be applied to shape data. P-PCA is a version of PCA for observations that are assumed to be leaf nodes of a phylogenetic tree. From a statistical point of view, the important property of such data is that the observations (leaf node values) are not necessarily independent. We define and estimate intrinsic weighted means and covariances on a manifold which takes the dependency of the observations into account. We then define phylogenetic PCA on a manifold to be the eigendecomposition of the weighted covariance in the tangent space of the weighted mean. We show that the mean estimator that is currently used in evolutionary biology for studying morphology corresponds to taking only a single step of our Riemannian gradient descent algorithm for the intrinsic mean, when the observations are represented in Kendall's shape space. Our second main contribution is a non-parametric method for dimension reduction that can be used for approximating a set of observations based on a very flexible class of submanifolds. This method is novel even in the case of Euclidean data. The method works by constructing a subbundle of the tangent bundle on the data manifold via local PCA. We call this subbundle the principal subbundle. We then observe that this subbundle induces a sub-Riemannian structure and we show that the resulting sub-Riemannian geodesics with respect to this structure stay close to the set of observations. Moreover, we show that sub-Riemannian geodesics starting from a given point locally generate a submanifold which is radially aligned with the estimated subbundle, even for non-integrable subbundles. Non-integrability is likely to occur when the subbundle is estimated from noisy data, and our method demonstrates that sub-Riemannian geometry is a natural framework for dealing which such problems. Numerical experiments illustrate the power of our framework by showing that we can achieve impressively large range reconstructions even in the presence of quite high levels of noise
I denne afhandling præsenteres nye metoder til dimensionsreduktion, baseret p˚adifferential geometri. Det vil sige metoder til at finde en repræsentation af et datasæti et rum af lavere dimension end det opringelige rum. S˚adanne metoder spiller enhelt central rolle i statistik, og har et meget bredt anvendelsesomr˚ade. En laveredimensionalrepræsentation af et datasæt tillader visualisering og er ofte nødvendigtfor efterfølgende statistisk analyse. I traditionel, Euklidisk statistik ligger observationernei et vektor rum, og det lavere-dimensionale rum kan være et lineært underrumeller en ikke-lineær undermangfoldighed som approksimerer observationerne.Studiet af s˚adanne glatte mangfoldigheder, differential geometri, spiller en vigtig rollei sidstnævnte tilfælde, eller hvis rummet hvori observationerne ligger i sig selv er enmangfoldighed. Metoder til at analysere observationer p˚a en mangfoldighed udgørfeltet geometrisk statistik. I denne kontekst er det approksimerende rum, fundetvia dimensionsreduktion, naturligt en submangfoldighed af den givne mangfoldighed.Udgangspunktet for denne afhandling er geometrisk statistik for observationer p˚a ena priori kendt Riemannsk mangfoldighed, men dele af vores arbejde udgør et bidragselv i tilfældet med observationer i Euklidisk rum, Rd.Et vigtigt eksempel p˚a data p˚a en mangfoldighed er former, i vores tilfældediskrete kurver eller overflader. I evolutionsbiologi er forskere interesseret i at studeregrunde til og implikationer af morfologiske forskelle mellem arter. Former er ´en m˚adeat formalisere morfologi p˚a. Denne anvendelse motiverer det første hovedbidrag idenne afhandling. We generaliserer en metode til dimensionsreduktion brugt i evolutionsbiologi,phylogenetisk principal component analysis (P-PCA), til at virke for datap˚a en Riemannsk mangfoldighed - s˚a den kan anvendes til observationer af former. PPCAer en version af PCA for observationer som antages at være de yderste knuder iet phylogenetisk træ. Fra et statistisk synspunkt er den vigtige egenskab ved s˚adanneobservationer at de ikke nødvendigvis er uafhængige. We definerer og estimerer intrinsiskevægtede middelværdier og kovarianser p˚a en mangfoldighed, som tager højde fors˚adanne observationers afhængighed. Vi definerer derefter phylogenetisk PCA p˚a enmangfoldighed som egendekomposition af den vægtede kovarians i tanget-rummet tilden vægtede middelværdi. Vi viser at estimatoren af middelværdien som pt. bruges ievolutionsbiologi til at studere morfologi svarer til at tage kun et enkelt skridt af voresRiemannske gradient descent algoritme for den intrinsiske middelværdi, n˚ar formernerepræsenteres i Kendall´s form-mangfoldighed.Vores andet hovedbidrag er en ikke-parametrisk metode til dimensionsreduktionsom kan bruges til at approksimere et data sæt baseret p˚a en meget flexibel klasse afsubmangfoldigheder. Denne metode er ny ogs˚a i tilfældet med Euklidisk data. Metodenvirker ved at konstruere et under-bundt af tangentbundet p˚a datamangfoldighedenM via lokale PCA´er. Vi kalder dette underbundt principal underbundtet. Viobserverer at dette underbundt inducerer en sub-Riemannsk struktur p˚a M og vi viserat sub-Riemannske geodæter fra et givent punkt lokalt genererer en submangfoldighedsom radialt flugter med det estimerede subbundt, selv for ikke-integrable subbundter.Ved støjfyldt data forekommer ikke-integrabilitet med stor sandsynlighed, og voresmetode demonstrerer at sub-Riemannsk geometri er en naturlig tilgang til at h˚andteredette. Numeriske eksperimenter illustrerer styrkerne ved metoden ved at vise at denopn˚ar rekonstruktioner over store afstande, selv under høje niveauer af støj
Hamann, Marco [Verfasser]. "Zur Differentialgeometrie zweiparametriger Geradenmengen im KLEINschen Modell / von Marco Hamann." 2004. http://d-nb.info/974391425/34.
Full textHeck, Thomas [Verfasser]. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien / vorgelegt von Thomas Heck." 1993. http://d-nb.info/962822760/34.
Full textReichert, Thorsten. "Classification and Reduction of Equivariant Star Products on Symplectic Manifolds." Doctoral thesis, 2017. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-153623.
Full textDiese Doktorarbeit klassifiziert äquivariante Sternprodukte (Sternprodukte zusammen mit Quantenimpulsabbildungen) über die äquivariante de Rham Kohomologie. Diese Klassifizierung wird im Folgenen genutzt um ein Analogon der Kirwan-Abbildung zu konstruieren, welches ermöglicht die charakteristische Klasse von bestimmten reduzierten Sternprodukten auf Marsden-Weinstein reduzierten symplektischen Mannigfaltigkeiten direkt aus der äquivarianten charakteristischen Klasse des zugehörigen unreduzierten äquivarianten Sternprodukts zu erhalten. Die Surjektivität dieser Abbildung zeigt schließlich, dass jedes Sternprodukt auf einer Marsden-Weinstein reduzierten symplektischen Mannigfaltigkeit (bis auf Äquivalenz) als Reduktion eines äquivarianten Sternprodukts verstanden werden kann
Weischedel, Clarisse. "A discrete geometric view on shear-deformable shell models." Doctoral thesis, 2012. http://hdl.handle.net/11858/00-1735-0000-000D-F06B-C.
Full textRahm, Alexander. "Characteristic classes of vector bundles with extra structure." Thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-000D-F285-2.
Full textFriedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66