To see the other types of publications on this topic, follow the link: Differentialgeometrie.

Journal articles on the topic 'Differentialgeometrie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 journal articles for your research on the topic 'Differentialgeometrie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Biquard, Olivier, Simon Brendle, and Bernhard Leeb. "Differentialgeometrie im Großen." Oberwolfach Reports 10, no. 3 (2013): 1929–74. http://dx.doi.org/10.4171/owr/2013/33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Besson, Gérard, Ursula Hamenstädt, and Michael Kapovich. "Differentialgeometrie im Großen." Oberwolfach Reports 12, no. 3 (2015): 1759–807. http://dx.doi.org/10.4171/owr/2015/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Besson, Gérard, Ursula Hamenstädt, Michael Kapovich, and Ben Weinkove. "Differentialgeometrie im Großen." Oberwolfach Reports 14, no. 2 (April 27, 2018): 1917–71. http://dx.doi.org/10.4171/owr/2017/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Besson, Gérard, Ursula Hamenstädt, Michael Kapovich, and Ben Weinkove. "Differentialgeometrie im Großen." Oberwolfach Reports 16, no. 2 (June 3, 2020): 1791–839. http://dx.doi.org/10.4171/owr/2019/30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bamler, Richard, Ursula Hamenstädt, Urs Lang, and Ben Weinkove. "Differentialgeometrie im Grossen." Oberwolfach Reports 18, no. 3 (November 25, 2022): 1685–734. http://dx.doi.org/10.4171/owr/2021/32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burghardt, R. "Gruppenwirkung und Differentialgeometrie." Annalen der Physik 502, no. 5 (1990): 383–90. http://dx.doi.org/10.1002/andp.19905020503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bamler, Richard, Otis Chodosh, Urs Lang, and Ben Weinkove. "Differentialgeometrie im Grossen." Oberwolfach Reports 20, no. 3 (April 18, 2024): 1617–70. http://dx.doi.org/10.4171/owr/2023/29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vincze, Stefan. "Bemerkungen zur Differentialgeometrie der Raumkurven." Publicationes Mathematicae Debrecen 4, no. 1-2 (July 1, 2022): 61–69. http://dx.doi.org/10.5486/pmd.1955.4.1-2.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jankovský, Zdeněk. "Laguerre's differential geometry and kinematics." Mathematica Bohemica 120, no. 1 (1995): 29–40. http://dx.doi.org/10.21136/mb.1995.125894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Voss, Konrad. "Einige Eindeutigkeitssätze in der Affinen Differentialgeometrie." Results in Mathematics 13, no. 3-4 (May 1988): 379–85. http://dx.doi.org/10.1007/bf03323253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pabel, Helmut. "Translationsfl�chen in der �quiaffinen Differentialgeometrie." Journal of Geometry 40, no. 1-2 (April 1991): 148–64. http://dx.doi.org/10.1007/bf01225881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brecher, Christian, Marcel Fey, and Maria Hildebrand. "Methode zur Bestimmung von Hauptkrümmungen in Wälzkontakten/Method for Calculating Main Curvatures in Rolling Contacts." Konstruktion 68, no. 11-12 (2016): 74–82. http://dx.doi.org/10.37544/0720-5953-2016-11-12-74.

Full text
Abstract:
Inhalt: Die Lebensdauer von Maschinenkomponenten mit Wälzkontakten hängt im Wesentlichen von den Belastungen in den Kontaktpunkten ab, welche in den meisten Fällen mit der Hertzschen Theorie berechnet werden. Zur Anwendung der Hertzschen Theorie müssen unter anderem die Hauptkrümmungen im Kontaktpunkt bekannt sein. Für komplexere oder vermessene Komponentengeometrien können diese nicht direkt bestimmt werden, so dass in der Praxis die Hauptkrümmungen ausgehend von der Körpergeometrie angenähert werden. Mit dem vorgestellten Ansatz aus der Differentialgeometrie ist es möglich, für jede Komponentenoberfläche die realen Hauptkrümmungsradien in einem beliebigen Punkt zu bestimmen.
APA, Harvard, Vancouver, ISO, and other styles
13

Gackstatter, Fritz. "Methoden der Differentialgeometrie in Himmelsmechanik und Astronomie." Complex Variables, Theory and Application: An International Journal 47, no. 8 (August 2002): 663–66. http://dx.doi.org/10.1080/02781070290016313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rapcsák, A. "Über die Begründung der lokalen metrischen Differentialgeometrie." Publicationes Mathematicae Debrecen 7, no. 1-4 (July 1, 2022): 382–93. http://dx.doi.org/10.5486/pmd.1960.7.1-4.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Laugwitz, Detlef. "Eine Beziehung zwischen affiner und Minkowskischer Differentialgeometrie." Publicationes Mathematicae Debrecen 5, no. 1-2 (July 1, 2022): 72–76. http://dx.doi.org/10.5486/pmd.1957.5.1-2.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dudley Sylla, Edith. "Die Werke von Jakob Bernoulli. Vol. 5, Differentialgeometrie." Historia Mathematica 30, no. 3 (August 2003): 378–80. http://dx.doi.org/10.1016/s0315-0860(03)00045-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Reich, Karin. "Das Eindringen des Vektorkalk�ls in die Differentialgeometrie." Archive for History of Exact Sciences 40, no. 3 (1989): 275–303. http://dx.doi.org/10.1007/bf00363552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vančura, Zdeněk. "On the differential geometry of sphere and line manifolds in three-dimensional Euclidean space." Časopis pro pěstování matematiky 111, no. 3 (1986): 235–41. http://dx.doi.org/10.21136/cpm.1986.108158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fraser, Craig. "Die Werke von Jakob Bernoulli: Die Differentialgeometrie. Jakob Bernoulli , André Weil , Martin Mattmüller." Isis 92, no. 1 (March 2001): 167–68. http://dx.doi.org/10.1086/385090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vančura, Zdeněk. "The differential geometry of manifolds of $n$-dimensional balls and manifolds of straight lines in $n+1$-dimensional Euclidean space." Časopis pro pěstování matematiky 114, no. 1 (1989): 45–52. http://dx.doi.org/10.21136/cpm.1989.118366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vančura, Zdeněk. "On the differential geometry of the $n$-dimensional sphere and line manifolds in the $(n+1)$-dimensional Euclidean space." Mathematica Bohemica 116, no. 1 (1991): 12–19. http://dx.doi.org/10.21136/mb.1991.126194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dizioğlu, Bekir. "Erweiterung des Vierscheitelsatzes der Differentialgeometrie mit Anwendung in der Theorie der Koppelkurven der ebenen Getriebe." Forschung im Ingenieurwesen 54, no. 1 (January 1988): 9–15. http://dx.doi.org/10.1007/bf02574554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shimada, Ichiro. "Zariski Hyperplane Section Theorem for Grassmannian Varieties." Canadian Journal of Mathematics 55, no. 1 (February 1, 2003): 157–80. http://dx.doi.org/10.4153/cjm-2003-007-9.

Full text
Abstract:
AbstractLet ϕ: X → M be a morphism from a smooth irreducible complex quasi-projective variety X to a Grassmannian variety M such that the image is of dimension ≥ 2. Let D be a reduced hypersurface in M, and γ a general linear automorphism of M. We show that, under a certain differentialgeometric condition on ϕ(X) and D, the fundamental group π1((γ ○ ϕ)−1 (M \ D)) is isomorphic to a central extension of π1(M \ D) × π1(X) by the cokernel of π2(ϕ) : π2(X) → π2(M).
APA, Harvard, Vancouver, ISO, and other styles
24

Rummler, Hansklaus. "Bernoulli: Die gesammelten Werke der Mathematiker und Physiker der Familie Bernoulli. Hrsg. von der Naturforschenden Gesellschaft in Basel; Die Werke von Jakob Bernoulli, Band 5: Differentialgeometrie. Bearbeitet und kommentiert von André Weil (t) und Martin Mattmüller. Basel etc., Birkhäuser, 1999. XXV, 445 S. III. SFr. 298.-; DM 358.-. ISBN 3-7643-5779-7." Gesnerus 57, no. 1-2 (November 27, 2000): 106–7. http://dx.doi.org/10.1163/22977953-0570102016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Leeb, Bernhard, Paul Seidel, and Gang Tian. "Differentialgeometrie im Grossen." Oberwolfach Reports, 2005, 1983–2042. http://dx.doi.org/10.4171/owr/2005/35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Biquard, Olivier, Bruce Kleiner, Bernhard Leeb, and Gang Tian. "Differentialgeometrie im Grossen." Oberwolfach Reports, 2007, 1865–912. http://dx.doi.org/10.4171/owr/2007/32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Biquard, Olivier, Xiuxiong Chen, Bernhard Leeb, and Gang Tian. "Differentialgeometrie im Großen." Oberwolfach Reports, 2011, 1857–912. http://dx.doi.org/10.4171/owr/2011/33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Piechottka, U. "Anwendung der Differentialgeometrie am Beispiel der Steuerbarkeit streng bilinearer Systeme." at - Automatisierungstechnik 36, no. 1-12 (January 1988). http://dx.doi.org/10.1524/auto.1988.36.112.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Clelland, Jeanne N., Taylor J. Klotz, and Peter J. Vassiliou. "Dynamic Feedback Linearization of Control Systems with Symmetry." Symmetry, Integrability and Geometry: Methods and Applications, July 1, 2024. http://dx.doi.org/10.3842/sigma.2024.058.

Full text
Abstract:
Control systems of interest are often invariant under Lie groups of transformations. For such control systems, a geometric framework based on Lie symmetry is formulated, and from this a sufficient condition for dynamic feedback linearizability obtained. Additionally, a systematic procedure for obtaining all the smooth, generic system trajectories is shown to follow from the theory. Besides smoothness and the existence of symmetry, no further assumption is made on the local form of a control system, which is therefore permitted to be fully nonlinear and time varying. Likewise, no constraints are imposed on the local form of the dynamic compensator. Particular attention is given to the consideration of geometric (coordinate independent) structures associated to control systems with symmetry. To show how the theory is applied in practice we work through illustrative examples of control systems, including the vertical take-off and landing system, demonstrating the significant role that Lie symmetry plays in dynamic feedback linearization. Besides these, a number of more elementary pedagogical examples are discussed as an aid to reading the paper. The constructions have been automated in the Maple package DifferentialGeometry.
APA, Harvard, Vancouver, ISO, and other styles
30

Ibbini∗, M. S. "NONLINEAR DIFFERENTIALGEOMETRIC TECHNIQUE FOR THE CONTROL OF DC-MACHINES WITH ONLINE PARAMETERS ESTIMATION." International Journal of Modelling and Simulation 27, no. 1 (2007). http://dx.doi.org/10.2316/journal.205.2007.1.205-4423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography