Academic literature on the topic 'Diffuse light'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffuse light.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diffuse light"

1

van Tiggelen, B. A., D. Lacoste, and G. L. J. A. Rikken. "Magneto-optics with diffuse light." Physica B: Condensed Matter 279, no. 1-3 (April 2000): 13–16. http://dx.doi.org/10.1016/s0921-4526(99)00655-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jacques, Steven L., and Brian W. Pogue. "Tutorial on diffuse light transport." Journal of Biomedical Optics 13, no. 4 (2008): 041302. http://dx.doi.org/10.1117/1.2967535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lakes, R. S., and G. Vick. "Partial Collimation of Diffuse Light from a Diffusely Reflective Source." Journal of Modern Optics 39, no. 10 (October 1992): 2113–19. http://dx.doi.org/10.1080/09500349214552131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kwon, S. M., S. S. Hong, and J. L. Weinberg. "Temporal and Spatial Variations of the Atmospheric Diffuse Light." International Astronomical Union Colloquium 126 (1991): 179–82. http://dx.doi.org/10.1017/s0252921100066720.

Full text
Abstract:
AbstractThe Barbier’s relation for the diffusely scattered airglow has been modified in such a way that it may describe, with simple changes of two parameter values, the dependence on zenith distance of the atmospheric diffuse light at any time of the night.
APA, Harvard, Vancouver, ISO, and other styles
5

NOLAN, DARYL G., and MAHESH K. UPADHYAYA. "PRIMARY SEED DORMANCY IN DIFFUSE AND SPOTTED KNAPWEED." Canadian Journal of Plant Science 68, no. 3 (July 1, 1988): 775–83. http://dx.doi.org/10.4141/cjps88-090.

Full text
Abstract:
Large numbers of viable, diffuse (Centaurea diffusa Lam.) and spotted knapweed (C. maculosa Lam.) seeds (achenes), collected in the interior of British Columbia, failed to germinate in darkness at 25 °C. This primary dormancy was released to varying degrees by gibberellic acid, exposure to red light, or excision of the distal end of the seed. The effect of red light was negated by subsequent exposure to far-red light. The demonstration of red/far-red reversibility implicates the phytochrome pigment system in the light-sensitive germination of knapweed seeds. Seeds collected from different sites, and from individual plants within sites, had different germination levels in darkness and following exposure to 2 min of red light. Three types of germination behavior were evident: nondormant seeds germinated in darkness; light-sensitive dormant seeds germinated in response to red light; and light-insensitive dormant seeds failed to germinate after 5 d of continuous red light. Seeds of all three germination types were found on individual plants.Key words: Centaurea diffusa, Centaurea maculosa, knapweed, seed dormancy, light-sensitive germination, germination polymorphism
APA, Harvard, Vancouver, ISO, and other styles
6

van den Kieboom, A. M. G., and J. A. Stoffers. "LIGHT TRANSMITTANCE UNDER DIFFUSE RADIATION CIRCUMSTANCES." Acta Horticulturae, no. 174 (December 1985): 67–74. http://dx.doi.org/10.17660/actahortic.1985.174.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arnaboldi, Magda, and Ortwin Gerhard. "JD2 - Diffuse Light in Galaxy Clusters." Proceedings of the International Astronomical Union 5, H15 (November 2009): 97–110. http://dx.doi.org/10.1017/s174392131000846x.

Full text
Abstract:
AbstractDiffuse intracluster light (ICL) has now been observed in nearby and in intermediate redshift clusters. Individual intracluster stars have been detected in the Virgo and Coma clusters and the first color-magnitude diagram and velocity measurements have been obtained. Recent studies show that the ICL contains of the order of 10% and perhaps up to 30% of the stellar mass in the cluster, but in the cores of some dense and rich clusters like Coma, the local ICL fraction can be high as 40%-50%. What can we learn from the ICL about the formation of galaxy clusters and the evolution of cluster galaxies? How and when did the ICL form? What is the connection to the central brightest cluster galaxy? Cosmological N-body and hydrodynamical simulations are beginning to make predictions for the kinematics and origin of the ICL. The ICL traces the evolution of baryonic substructures in dense environments and can thus be used to constrain some aspects of cosmological simulations that are most uncertain, such as the modeling of star formation and the mass distribution of the baryonic component in galaxies.
APA, Harvard, Vancouver, ISO, and other styles
8

Scheick, Xania, and Jeffrey R. Kuhn. "Diffuse Light in A2670: Smoothly Distributed?" Astrophysical Journal 423 (March 1994): 566. http://dx.doi.org/10.1086/173835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mihos, J. Christopher, Paul Harding, John Feldmeier, and Heather Morrison. "Diffuse Light in the Virgo Cluster." Astrophysical Journal 631, no. 1 (August 29, 2005): L41—L44. http://dx.doi.org/10.1086/497030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sandin, Christer. "The influence of diffuse scattered light." Astronomy & Astrophysics 567 (July 2014): A97. http://dx.doi.org/10.1051/0004-6361/201423429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Diffuse light"

1

LaMarr, John Henry. "Diffuse light correction for field reflectance measurements." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/279899.

Full text
Abstract:
The Remote Sensing Group of the Optical Sciences Center at the University of Arizona performs absolute radiometric calibration of Earth-viewing sensors using vicarious methods. The reflectance and irradiance-based methods require the nadir-view reflectance of a calibration site at sensor overpass. Errors in these reflectance data contribute directly to errors in the retrieved at sensor radiance, and therefore errors in the calibration. This research addresses two areas of improvement for the reflectance retrieval. The discreet laboratory data of the reference panel is spectrally interpolated using the measured hemispherical reflectance rather than a polynomial fit. This interpolation better fits an absorption feature of the reference material near 2200 nm. The desired reflectance is due to the directly-transmitted solar irradiance, but field measurements also include irradiance due to diffuse light. Non-lambertian properties of the reference and surface cause the ratio of the reflected total radiances to differ from the ratio of the reflected solar radiances. This difference can be corrected using additional field measurements, shaded surface/shaded-reference, output from a radiative transfer code, RTC-only, or a combination of both, shaded-reference. For the shaded-reference and RTC-only methods the shape of the bi-directional reflectance factor of the surface must be known to better than 10% to maintain a 2% accuracy for the retrievals, while the shaded-surface/shaded-reference method does not use the surface BRF. All three methods were applied to measurements of calibrated reflectance tarpaulins, and to measurements made at White Sands Missile Range. These data demonstrate that the shaded-surface/shaded-reference and RTC-only methods improve the surface reflectance retrieval, while the shaded-reference method is too sensitive to variations between the actual and modeled diffuse sky irradiance to be useful. This research represents significant improvements in the calculation of surface reflectance for vicarious calibration. The hemispherical reflectance interpolation will reduce uncertainties in the short wave infrared by 1%, and the diffuse corrections will reduce the errors in blue by 2% in some cases.
APA, Harvard, Vancouver, ISO, and other styles
2

Aquotte, Fabio de Almeida. "Real-time diffuse indirect illumination with virtual light meshes." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/164054.

Full text
Abstract:
A iluminação indireta é capaz de elevar consideravelmente a qualidade visual de cenas renderizadas, mas é também uma operação custosa. Por este motivo, há muito esforço de pesquisa voltado para a renderização de iluminação indireta em tempo real. Apesar de atualmente existirem técnicas poderosas para a iluminação indireta em tempo real, elas fornecem ao artista apenas um controle grosseiro do equilíbrio entre qualidade e desempenho. Nós propomos uma Malha de Luzes Virtuais para calcular a iluminação indireta difusa numa cena, inspirados pelo uso de outras malhas auxiliares, como Malhas de Navegação e Malhas de Colisão. Uma Malha de Luzes Virtuais (MLV) é uma malha simplificada de luzes poligonais usadas para aproximar a luz refletida pela geometria real. Juntamente com a MLV, nós projetamos uma estrutura de dados de aceleração para atingir um desempenho eficiente com iluminação indireta usando uma MLV complexa. O uso da MLV apresenta algumas características vantajosas: maior controle artístico dos atributos da iluminação indireta; a possibilidade de integração com técnicas existentes como animação esquelética e geração procedural; e integração simples com ferramentas e processos de produção de arte existentes. Nossos resultados experimentais mostram que a iluminação indireta controlada por artistas é uma alternativa viável a métodos existentes.
Indirect illumination on a rendered scene can add a great deal to its visual quality, but it is also a costly operation. Therefore, a lot of research targets how to render indirect illumination in real-time. While powerful techniques for real-time indirect illumination currently exist, they provide only coarse-grained artistic control over the trade-off between quality and speed. We propose a Virtual Light Mesh to compute the scene’s diffuse indirect illumination, inspired by the use of other current auxiliary meshes such as Navigation Meshes and Collision Meshes. A Virtual Light Mesh (VLM) is a simplified mesh of polygonal lights used to approximate the light bounced by the real geometry. Together with the VLM, we design an acceleration data structure for efficient indirect illumination performance with a complex VLM. The use of VLM presents some positive properties: greater artistic control of the indirect illumination characteristics; the possibility of integration with existing techniques such as skeletal animation and procedural generation; and simple integration into existing asset production tools and pipelines. Our experimental results show that artist controlled indirect illumination is a viable alternative to existing methods.
APA, Harvard, Vancouver, ISO, and other styles
3

Everitt, David Lewis. "Imaging of tissue-like media with diffuse light : analysis and optimization of a diffuse photon tomography /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gómez, Rivas Jaime. "Light in strongly scattering semiconductors diffuse transport and Anderson localization /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/63879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sridhar, Susmita. "Elliptically polarized light for depth resolved diffuse reflectance imaging in biological tissues." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404053.

Full text
Abstract:
Polarization gating imaging is a popular and widely used imaging technique in biomedical optics to sense tissues, deeper volumes, and also selectively probe sub-superficial volumes. Due to the "polarization memory" effect of polarized light, elliptical polarization-gating allows access to tissue layers between those of accessible by linear or circular polarizations. As opposed to the conventional linearly polarized illumination, we focus on polarization gating methods that combine the use of elliptically polarized light to select polarization maintaining photons and eliminate the background while providing superior contrast and depth information. With gating, it has also become possible to access user-defined depths (dependent on optical properties) in biological tissues with the use of images at different ellipticities. Furthermore, this investigation allowed the application of polarization gating in spectroscopy to selectively quantify the concentration of tissue chromophores at userdesired depths. Polarization gating methods have been validated and demonstrated with in vivo experiments on abnormalities of human skin (nevus, burn scar) and also on the exposed cortex of an anaesthetized rat. Finally, as a first step towards the use of coherent illumination, adding the concept of polarimetry to laser-speckle imaging was demonstrated. Preliminary tests on phantoms (solid and liquid) suggested evidence of the influence of polarization ellipticity on the formation and behaviour of speckles, which could pave the way for more insight in the study of blood flow in tissues.
L’imagerie de filtrage en polarisation est une technique populaire largement utilisée en optique pour le biomédical pour le sondage des tissus superficiels, pour le sondage de volumes plus profonds, mais aussi pour l’examen sélectif de volumes sub-surfaciques. Du fait de l’effet de ’mémoire de polarisation’ de la lumière polarisée, l’imagerie de filtrage en polarisation elliptique est sensible à des épaisseurs de tissus différentes, depuis la surface, accessible avec la polarisation linéaire, jusqu’à une épaisseur critique accessible par la polarisation circulaire. Nous nous concentrons sur des méthodes utilisant des combinaisons de polarisations elliptiques afin de sélectionner la portion de lumi ère ayant maintenu son état de polarisation et éliminer le fond pour un meilleur contraste avec, de plus, une information sur la profondeur. Avec ce type de filtrage, il est possible d’accéder à des profondeurs de tissus biologiques bien définies (selon ses propriétés optiques) selon l’ellipticité de polarisation. De plus, ces travaux ont permis d’étendre la méthode à la spectroscopie pour quantifier sélectivement la concentration en chromophores à une profondeur spécifique. Les méthodes développées ont été validées in vivo à l’aide d’expériences réalisées sur des anomalies de la peau (grain de beauté, cicatrice de brûlure) et aussi sur le cortex exposé d’un rat anesthésié. Enfin, une étude préliminaire a été réalisée pour examiner la possibilité d’étendre la méthode à l’imagerie de tavelures (speckle). Des tests Préliminaires réalisés sur fantômes (solides et liquides) montrent l’influence de l’ellipticité de polarisation sur la formation et le comportement du speckle, ce qui offre la possibilité d’accéder à des informations sur le flux sanguin à des profondeurs spécifiques dans les tissus.
"Polarization gating imaging" es una técnica de imagen muy popular y ampliamente empleada en óptica biomédica con el fin de caracterizar tejidos y sondear volúmenes subsuperficiales de manera selectiva incluso a regiones profundas. Debido al efecto conocido como memoria de polarización de la luz polarizada, la técnica de "polarization gating" elíptica permite el acceso a capas de tejido que, de otro modo, no son accesibles mediante polarización lineal y circular. En contra de la iluminación linealmente polarizada convencional, nuestro estudio se centra en los métodos de "polarization gating" en combinación con luz elípticamente polarizada. Esto permite discriminar aquellos fotones que mantienen una polarización concreta, eliminando así el fondo al mismo tiempo que proporciona un mayor contraste y profundidad de campo, incrementando notablemente la información extraída. Gracias a esta técnica es posible el acceso a distintas profundidades en tejidos biológicos definidas por el usuario (dependiendo de las propiedades ópticas) mediante el empleo de imágenes a distinta elipticidad. Es más, este estudio ha permitido la aplicación del método "polarization gating" a la espectroscopia con el fin de cuantificar la concentración de ciertos cromóforos presentes en tejidos biológicos de manera selectiva y a distintas profundidades deseadas. Los métodos de "polarization gating" han sido validados, establecidos y demostrados en experimentos in-vivo sobre anomalías en tejidos epiteliales humanos (nervios, cicatrices por quemadura) y también en el córtex expuesto de una rata anestesiada. Finalmente, como primer paso en el uso de iluminación coherente, se ha añadido y demostrado el concepto de polarimetría a la técnica de speckle imaging por láser. Los test preliminares en "phantoms" (tanto en sólido como en líquido) arrojan indicios sobre una influencia de la polarización elíptica en la formación y comportamiento de la distribución de las motas (speckle), lo cual podría abrir nuevas puertas y dar un nuevo enfoque sobre la comprensión de la circulación de la sangre en los tejidos.
APA, Harvard, Vancouver, ISO, and other styles
6

Niemeyer, Andreas [Verfasser], and M. [Akademischer Betreuer] Wegener. "On Cloaking for Diffuse Light and its Limits / Andreas Niemeyer ; Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1229514708/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zraket, David Camus. "Testing the value of the one-dimensional transport equation with a diffuse light approximation in predicting light flux in tissue." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14649.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1987.
Title as it appears in M.I.T. Graduate List, Sept. 1987: Testing the predictive value of the one-dimensional transport equation with a diffuse light approximation in predicting light flux in tissue.
Bibliography: leaf 37.
by David Camus Zraket.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
8

Badieirostami, Majid. "Design and implementation of ultra-high resolution, large bandwidth, and compact diffuse light spectrometers." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26644.

Full text
Abstract:
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Adibi, Ali; Committee Member: Bhatti, Pamela; Committee Member: Callen, William; Committee Member: Gaylord, Thomas; Committee Member: Zhou, Hao-Min. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
9

Brodersen, Craig. "The Absorption and Utilization of Direct, Diffuse and Low Angle Light by Plant Leaves." ScholarWorks @ UVM, 2008. http://scholarworks.uvm.edu/graddis/31.

Full text
Abstract:
The light environment of plants is extremely complex and questions relating to how direct, diffuse, or low-angle light affect plants at the leaf-level have remained largely unanswered. Global-change scenarios suggest a trend of increasing diffuse light due to expected increases in cloud cover and atmospheric water vapor concentrations. Here we present three different examples where changes in the directional quality of light affect leaf-level processes. First, some understory plants have well-developed lens-shaped epidermal cells, which have been shown to focus collimated light, but their optical function under diffuse light has been largely speculative. To assess the role of epidermal cell shape in capturing direct vs. diffuse light, we measured leaf reflectance and transmittance with an integrating sphere system using leaves with flat and lens-shaped epidermal cells. Regardless of epidermal cell shape, direct light was absorbed more than diffuse light in all species studied by approximately 2–3%. These data suggest that lensshaped epidermal cells do not aid the capture of diffuse light, and palisade and mesophyll cell anatomy and leaf thickness appear to have more influence in the capture and absorption of light than does epidermal cell shape. Second, community-level productivity has been shown to increase under diffuse light conditions and has been attributed to more uniform distribution of light within the forest canopy. Leaf-level responses to the directional quality of light, however, are unknown. Here we show that leaf-level photosynthesis in sun leaves of both C3 and C4 plants can be 10–15% higher under direct light compared to equivalent absorbed irradiances of diffuse light, while shade-adapted leaves showed no preference for direct or diffuse light at any irradiance. Sun leaves with multiple palisade layers may be adapted to better utilize direct than diffuse light, while shade leaf structure does not appear to discriminate light based on its directionality. Thus, it appears that leaf-level and canopy-level photosynthetic processes react differently to the directionality of light, and previously observed increases in canopy-level photosynthesis occur even though leaf-level photosynthesis decreases under diffuse light. Third, we tested how changes in the directional quality of light affect the penetration of light at the leaf-level. Using chlorophyll fluorescence imaging we were able to determine that low-angle and diffuse light do not penetrate as deeply into leaves as direct light. Upon entering the leaf, diffuse light appears to scatter and remain in the upper tissue layers, while direct light penetrates through more leaf tissue. Absorption of diffuse light is reduced compared to direct light, with the greatest differences in absorption occurring near the interface of the palisade and spongy mesophyll tissue. Changes in the directional quality of light can therefore alter the absorption of light at the leaf-level, and a shift in the absorption profile could potentially decrease light utilization, potentially contributing to the leaf-level photosynthetic differences observed. Overall, it is now clear that plants are much more sensitive to the directional quality of light than we once believed. Also, the directional quality of light has different effects when scaling from the leaf to the landscape, and models of both leaf-level and community-level photosynthesis should be revised to account for these new findings.
APA, Harvard, Vancouver, ISO, and other styles
10

Ritchey, Adam M. "The Abundance of Boron in Diffuse Interstellar Clouds." Connect to full text in OhioLINK ETD Center, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1250896589.

Full text
Abstract:
Dissertation (Ph.D.)--University of Toledo, 2009.
Typescript. "Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics." Bibliography: leaves 113-121.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Diffuse light"

1

Wang, Yuzhu. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity. Trieste: International Atomic Agency, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Somaratne, S. M. Generation, adoption, and impact of a diffused light potato storage technology in Badulla District, Sri Lanka. [Los Banos]: University of the Phillipines at Los Banos, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Principles Of Diffuse Light Propagation Light Propagation In Tissues With Applications In Biology And Medicine. World Scientific Publishing Company, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Photon migration and diffuse-light imaging: 22-23 June 2003, Munich, Germany. Bellingham, WA: SPIE, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

A, Boas David, Society of Photo-optical Instrumentation Engineers., Optical Society of America, and European Physical Society, eds. Photon migration and diffuse-light imaging: 22-23 June 2003, Munich, Germany. Bellingham, Wash., USA: SPIE, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gori, Simone, Enrico Giora, and D. Alan Stubbs. The Breathing Light Illusion. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0047.

Full text
Abstract:
This chapter discusses the Breathing Light Illusion. The Breathing Light Illusion is a size and brightness illusion elicited by the self-motion of the observer. The stimulus consists of a circular white spot that is presented on a black background, characterized by blurred boundaries. The blurred spot, which in static view seems to glow and exhibits a self-luminance appearance, is perceived as wider, brighter, and more diffuse when it is approached but smaller, darker, and sharper when one recedes from it. A possible explanation of the phenomenon is related to the superimposition of the afterimage on the physical stimulus during dynamical viewing.
APA, Harvard, Vancouver, ISO, and other styles
7

Britton, Chance, Biomedical Optics Society, European Optical Society, and Society of Photo-optical Instrumentation Engineers., eds. Proceedings of quantification and localization using diffuse photons in a highly scattering medium: 3-5 September 1993, Budapest, Hungary. Bellingham, Wash., USA: SPIE, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Society, European Physical. Photon Migration and Diffuse-Light Imaging II: 12-16 June 2005, Munich, Germany (Progress in Biomedical Optics and Imaging,). SPIE-International Society for Optical Engine, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wright, A. G. The optical interface to PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0003.

Full text
Abstract:
The optical interface between a light source and a detector is important. In most practical realizations the aim should be to collect the maximum light possible. Lens systems seldom do this efficiently, especially where the light source is diffuse. Underlying any attempt at concentrating or guiding light is subject to a fundamental limitation referred to as étendue (phase space cannot be squeezed). Light collection from small volume scintillators of high refractive index may approach 50 %, while collection from large-area scintillators is typically less than a few per cent. Incorporation of wavelength-shifting light guides and fibres leads to enhanced performance. Efficiency measurements by the author in terms of photoelectrons per keV are presented for selected configurations. Optical recycling derived from total internal reflection provides enhancement in effective quantum efficiency by a factor of up to 10. Concepts such as escape cones, adiabatic light guides, and trapped light are covered in detail.
APA, Harvard, Vancouver, ISO, and other styles
10

Niaudet, Patrick, and Alain Meyrier. Idiopathic nephrotic syndrome. Edited by Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0054_update_001.

Full text
Abstract:
Idiopathic nephrotic syndrome is defined by the combination of massive proteinuria, hypoalbuminaemia, hyperlipidaemia, and oedema, and of non-specific histological abnormalities of the glomeruli. Light microscopy may disclose minimal change disease, diffuse mesangial proliferation, or focal segmental glomerular sclerosis (FSGS). The two main causes of idiopathic nephrotic syndrome are characterized histologically. On electron microscopy the glomerular capillaries show a fusion of visceral epithelial cell (podocyte) foot processes and with the exception of some variants no significant deposits of immunoglobulins or complement by immunofluorescence. In a majority of children only minimal changes are seen on light microscopy. These children are referred to as having ‘minimal change disease’. In adults with idiopathic nephrotic syndrome, lesions of FSGS are more frequent.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Diffuse light"

1

Irvine, William M. "Diffuse Galactic Light." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_433-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Irvine, William M. "Diffuse Galactic Light." In Encyclopedia of Astrobiology, 646. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Irvine, William M. "Diffuse Galactic Light." In Encyclopedia of Astrobiology, 431–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klein, Abel. "Localization of Light in Randomized Periodic Media." In Diffuse Waves in Complex Media, 73–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4572-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rudick, C. S., J. C. Mihos, and C. McBride. "Simulating Diffuse Light in Galaxy Clusters." In Groups of Galaxies in the Nearby Universe, 227–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71173-5_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

van der Zwet, G. P., and L. J. Allamandola. "Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands." In Light on Dark Matter, 233–36. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4672-9_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greenberg, J. Mayo. "Dust in Diffuse Clouds: One Stage in a Cycle." In Light on Dark Matter, 177–88. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4672-9_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yanovitskij, Edgard G. "Diffuse Reflection and Transmission of Light by Atmospheres." In Light Scattering in Inhomogeneous Atmospheres, 195–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60465-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoyle, F., and N. C. Wickramasinghe. "Reflection Nebulae and the Diffuse Galactic Light." In The Theory of Cosmic Grains, 72–93. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3402-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rappoport, Ari. "Visualizing a Diffuse Light Bubble Data Base." In Advances in Scientific Visualization, 196–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77334-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diffuse light"

1

Nayar, Shree K., and Mohit Gupta. "Diffuse structured light." In 2012 IEEE International Conference on Computational Photography (ICCP). IEEE, 2012. http://dx.doi.org/10.1109/iccphot.2012.6215216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faber, Dirk J., Anouk L. Post, and Ton G. van Leeuwen. "Pathlength distribution of (sub)diffusively reflected light." In Diffuse Optical Spectroscopy and Imaging, edited by Hamid Dehghani and Heidrun Wabnitz. SPIE, 2019. http://dx.doi.org/10.1117/12.2527903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gunther, Jacqueline E., Baptiste Jayet, Raymond Burke, and Stefan Andersson-Engels. "Modelling light propagation for fetal monitoring in utero." In Diffuse Optical Spectroscopy and Imaging, edited by Hamid Dehghani and Heidrun Wabnitz. SPIE, 2019. http://dx.doi.org/10.1117/12.2526758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Shan, Ping Xue, Jiansong Gao, Lei Wang, and Die Yan Chen. "Visual simulation of diffuse light." In Optics and Optoelectronic Inspection and Control: Techniques, Applications, and Instruments, edited by Hong Liu and Qingming Luo. SPIE, 2000. http://dx.doi.org/10.1117/12.403987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Castro-Rodríguez, N. "Diffuse Light in Galaxy Groups." In PLANETARY NEBULAE AS ASTRONOMICAL TOOLS: International Conference on Planetary Nebulae as Astronomical Tools. AIP, 2005. http://dx.doi.org/10.1063/1.2146299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arnaboldi, M. "Diffuse light in clusters of galaxies." In Baryons in Dark Matter Halos. Trieste, Italy: Sissa Medialab, 2004. http://dx.doi.org/10.22323/1.014.0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brothers, Rowan, Nir Atlas, and Erin M. Buckley. "Cerebrovascular reactivity measured in awake mice using diffuse correlation spectroscopy." In Biomedical Applications of Light Scattering XI, edited by Adam Wax and Vadim Backman. SPIE, 2021. http://dx.doi.org/10.1117/12.2577217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potemkin, Andrey V., Alexei A. Kamshilin, Mikhail V. Volkov, Nikita B. Margaryantz, Maxim A. Volynsky, and Igor P. Gurov. "Analysis of light intensity modulation by red blood cells motion in capillaries." In Diffuse Optical Spectroscopy and Imaging VI, edited by Hamid Dehghani and Heidrun Wabnitz. SPIE, 2017. http://dx.doi.org/10.1117/12.2284798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bressel, Lena, Bernd Herzog, and Oliver Reich. "Monte-Carlo simulations of light transport in dense materials: dependent scattering and influence on sunscreen formulations." In Diffuse Optical Spectroscopy and Imaging, edited by Hamid Dehghani and Heidrun Wabnitz. SPIE, 2019. http://dx.doi.org/10.1117/12.2527076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robinson, Mitchell B., Davide Tamborini, Adriano Peruch, Stefan A. Carp, and Maria Angela Franceschini. "Multi-element interferometric diffuse correlation spectroscopy at 1064 nm (Conference Presentation)." In Biomedical Applications of Light Scattering X, edited by Adam Wax and Vadim Backman. SPIE, 2020. http://dx.doi.org/10.1117/12.2546350.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diffuse light"

1

Leung, Y., Y. Zhang, B. Yanny, K. Herner, J. Annis, A. Palmese, A. Sampaio-Santos, et al. The Diffuse Light Envelope of Luminous Red Galaxies. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1637638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Augustoni, Arnold L. Hazard analysis of long term viewing of visible laser light off of fluorescent diffuse reflective surfaces (post-it). Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/894322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Small, IV, W. LLNL SMP Light Diffuser Fabrication and Preliminary Data. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/896295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raatz, Maria E., Howard H. Beasley, Thomas H. Harding, and Clarence E. Rash. Evaluation of the Seattle Photonics Light Shape Diffuser. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada428530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Quing. Breast Cancer Diagnosis Using Ultrasound and Diffusive Light. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada398101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Quing. Breast Cancer Diagnosis Using Ultrasound and Diffusive Light. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada429296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Quing. Breast Cancer Diagnosis Using Ultrasound and Diffusive Light. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada421915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Janse, Jan. Diffuus licht en lichtspectrum in relatie tot bestuiving, zetting en insecten bij tomaat : literatuuronderzoek in opdracht van Koppert Biological Systems. Bleiswijk: Wageningen University & Research, BU Glastuinbouw, 2017. http://dx.doi.org/10.18174/424934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography