Academic literature on the topic 'Diffusion-advection equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion-advection equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diffusion-advection equation"

1

Chang Fu-Xuan, Chen Jin, and Huang Wei. "Anomalous diffusion and fractional advection-diffusion equation." Acta Physica Sinica 54, no. 3 (2005): 1113. http://dx.doi.org/10.7498/aps.54.1113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sene, Ndolane, and Karima Abdelmalek. "Nonlinear sub-diffusion and nonlinear sub-diffusion dispersion equations and their proposed solutions." Applied Mathematics and Nonlinear Sciences 5, no. 1 (2020): 221–36. http://dx.doi.org/10.2478/amns.2020.1.00020.

Full text
Abstract:
AbstractMany investigations related to the analytical solutions of the nonlinear sub-diffusion equation exist. In this paper, we investigate the conditions under which the analytical and the approximate solutions of the nonlinear sub-diffusion equation and the nonlinear sub-advection dispersion equation exist. In other words, the problems of existence and uniqueness of the solutions the fractional diffusion equations have been addressed. We use the Banach fixed Theorem. After proving the existence and uniqueness, we propose the analytical and the approximate solutions of the nonlinear sub-diff
APA, Harvard, Vancouver, ISO, and other styles
3

Hadadian Nejad Yousefi, Mohsen, Seyed Hossein Ghoreishi Najafabadi, and Emran Tohidi. "A new spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations via Chebyshev polynomials." Engineering Computations 36, no. 7 (2019): 2327–68. http://dx.doi.org/10.1108/ec-02-2018-0063.

Full text
Abstract:
Purpose The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations. Design/methodology/approach In this study, the considered two-dimensional unsteady advection-diffusion equations are transformed into the equivalent partial integro-differential equations via integrating from the considered unsteady advection-diffusion equation. After this stage, by using Chebyshev polynomials of the first kind and the operational matrix of integration, the integral equation would be transformed into the
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Jiankang. "Wave equation model for solving advection-diffusion equation." International Journal for Numerical Methods in Engineering 37, no. 16 (1994): 2717–33. http://dx.doi.org/10.1002/nme.1620371603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dhawan, S., and S. Kapoor. "Numerical simulation of advection-diffusion equation." International Journal of Mathematical Modelling and Numerical Optimisation 2, no. 1 (2011): 13. http://dx.doi.org/10.1504/ijmmno.2011.037197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grant, John, and Michael Wilkinson. "Advection–Diffusion Equation with Absorbing Boundary." Journal of Statistical Physics 160, no. 3 (2015): 622–35. http://dx.doi.org/10.1007/s10955-015-1257-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Avci, Derya, Eroğlu İskender, and Necati Özdemir. "The Dirichlet problem of a conformable advection-diffusion equation." Thermal Science 21, no. 1 Part A (2017): 9–18. http://dx.doi.org/10.2298/tsci160421235a.

Full text
Abstract:
The fractional advection-diffusion equations are obtained from a fractional power law for the matter flux. Diffusion processes in special types of porous media which has fractal geometry can be modelled accurately by using these equations. However, the existing nonlocal fractional derivatives seem complicated and also lose some basic properties satisfied by usual derivatives. For these reasons, local fractional calculus has recently been emerged to simplify the complexities of fractional models defined by nonlocal fractional operators. In this work, the conformable, a local, well-behaved and l
APA, Harvard, Vancouver, ISO, and other styles
8

CANUTO, C., та A. RUSSO. "ON THE ELLIPTIC-HYPERBOLIC COUPLING I: THE ADVECTION-DIFFUSION EQUATION VIA THE χ-FORMULATION". Mathematical Models and Methods in Applied Sciences 03, № 02 (1993): 145–70. http://dx.doi.org/10.1142/s0218202593000096.

Full text
Abstract:
An advection-diffusion equation is considered, for which the solution is advection-dominated in most of the domain. A domain decomposition method based on a self-adaptive, smooth coupling of the reduced advection equation and the full advection-diffusion equation is proposed. The convergence of an iteration-by-subdomain method is investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Alikakos, Nicholas D., Peter W. Bates, and Christopher P. Grant. "Blow up for a diffusion-advection equation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 113, no. 3-4 (1989): 181–90. http://dx.doi.org/10.1017/s0308210500024057.

Full text
Abstract:
SynopsisThese results describe the asymptotic behaviour of solutions to a certain non-linear diffusionadvection equation on the unit interval. The “no flux” boundary conditions prescribed result in mass being conserved by solutions and the existence of a mass-parametrised family of equilibria. A natural question is whether or not solutions stabilise to equilibria and if not, whether they blow up in finite time. Here it is shown that for non-linearities which characterise “fast association” there is a criticalmass such that initial data which have supercritical mass must lead to blow up in fini
APA, Harvard, Vancouver, ISO, and other styles
10

Dağ, İdris, Aynur Canivar, and Ali Şahin. "Taylor‐Galerkin method for advection‐diffusion equation." Kybernetes 40, no. 5/6 (2011): 762–77. http://dx.doi.org/10.1108/03684921111142304.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Diffusion-advection equation"

1

Dubois, Olivier. "Optimized Schwarz methods for the advection-diffusion equation." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19701.

Full text
Abstract:
The optimized Schwarz methods were recently introduced to enhance the convergence of the classical Schwarz iteration, by replacing the Dirichlet transmission conditions with different conditions obtained through an optimization of the convergence rate. This is formulated as a min-max problem. These new methods are well-studied for elliptic second order symmetric equations. The purpose of this work is to compute optimized Robin transmission conditions for the advection-diffusion equation in two dimensions, by finding the solution of the min-max problem. The asymptotic expansion, for small mesh
APA, Harvard, Vancouver, ISO, and other styles
2

Molkenthin, Nora. "Advection-diffusion-networks." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/17064.

Full text
Abstract:
Das globale Klimasystem ist ein ausgesprochen komplexes und hochgradig nichtlineares System mit einer Vielzahl von Einflüssen und Interaktionen zwischen Variablen und Parametern. Komplementär zu der Beschreibung des Systems mit globalen Klimamodellen, kann Klima anhand der Interaktionsstruktur des Gesamtsystems durch Netzwerke beschrieben werden. Statt Details so genau wie möglich zu modellieren, werden hier Zeitreihendaten verwendet um zugrundeliegende Strukturen zu finden. Die Herausforderung liegt dann in der Interpretation dieser Strukturen. Um mich der Frage nach der Interpretation von N
APA, Harvard, Vancouver, ISO, and other styles
3

Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, Kevin L. "Declarative modeling of coupled advection and diffusion as applied to fuel cells." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51814.

Full text
Abstract:
The goal of this research is to realize the advantages of declarative modeling for complex physical systems that involve both advection and diffusion to varying degrees in multiple domains. This occurs, for example, in chemical devices such as fuel cells. The declarative or equation-based modeling approach can provide computational advantages and is compatible with physics-based, object-oriented representations. However, there is no generally accepted method of representing coupled advection and diffusion in a declarative modeling framework. This work develops, justifies, and implements
APA, Harvard, Vancouver, ISO, and other styles
5

Dubois, Olivier 1980. "Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103379.

Full text
Abstract:
Optimized Schwarz methods are iterative domain decomposition procedures with greatly improved convergence properties, for solving second order elliptic boundary value problems. The enhanced convergence is obtained by replacing the Dirichlet transmission conditions in the classical Schwarz iteration with more general conditions that are optimized for performance. The convergence is optimized through the solution of a min-max problem. The theoretical study of the min-max problems gives explicit formulas or characterizations for the optimized transmission conditions for practical use, and it perm
APA, Harvard, Vancouver, ISO, and other styles
6

Chakravarty, Lopamudra. "Scalable Hybrid Schwarz Domain Decomposition Algorithms to Solve Advection-Diffusion Problems." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1523325804305835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, Xiaoming. "Reaction-diffusion Equations with Nonlinear and Nonlocal Advection Applied to Cell Co-culture." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0216/document.

Full text
Abstract:
Cette thèse est consacrée à l’étude d’une classe d’équations de réaction-diffusion avec advection non-locale. La motivation vient du mouvement cellulaire avec le phénomène de ségrégation observé dans des expérimentations de co-culture cellulaire. La première partie de la thèse développe principalement le cadre théorique de notre modèle, à savoir le caractère bien posé du problème et le comportement asymptotique des solutions dans les cas d'une ou plusieurs espèces.Dans le Chapitre 1, nous montrons qu'une équation scalaire avec un noyau non-local ayant la forme d'une fonction étagée, peut indui
APA, Harvard, Vancouver, ISO, and other styles
8

Martin, Kristin Terese. "Limitations of the Advection-Diffusion Equation for Modeling Tephra Fallout: 1992 Eruption of Cerro Negro Volcano, Nicaragua." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xiuquan. "Parameter Estimation in the Advection Diffusion Reaction Model With Mean Occupancy Time and Boundary Flux Approaches." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/976.

Full text
Abstract:
In this dissertation, we examine an advection diffusion model for insects inhabiting a spatially heterogeneous environment and moving toward a more favorable environment. We first study the effects of adding a term describing drift or advection toward a favorable environment to diffusion models for population dynamics. The diffusion model is a basic linear two-dimensional diffusion equation describing local dispersal of species. The mathematical advection terms are taken to be Fickian and describe directed movement of the population toward the favorable environment. For this model, the landsca
APA, Harvard, Vancouver, ISO, and other styles
10

Loeck, Jaqueline Fischer. "Efeitos estocásticos em modelos determinísticos para dispersão de poluentes na camada limite atmosférica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/131025.

Full text
Abstract:
A presente dissertação apresenta uma análise da presença de componentes estocásticas na equação de advecção-difusão, e como estas influenciam a estabilidade da solução. Para tal, a equação de advecção-difusão determinística com fonte contínua idealizada é resolvida através da transformada de Fourier. Adiante, a equação determinística é combinada com componentes estocásticas na velocidade do vento, comprimento de rugosidade e coeficiente de difusão turbulenta vertical. Além disso, é considerada uma permeabilidade parcial nos contornos verticais, de modo que parte do poluente ultrapassa a camada
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Diffusion-advection equation"

1

Abarbanel, Saul S. Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crockett, Stephen Robert. A semi-lagrangian discretization scheme for solving the advection-diffusion equation in two-dimensional simply connected regions. National Library of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jan, Verwer, ed. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Berlin Heidelberg, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hundsdorfer, Willem, and Jan Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-09017-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

1946-, Verwer J. G., ed. Numerical solution of time-dependent advection-diffusion-reaction equations. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

G, Ostrovskii Alexander, ed. Advection and diffusion in random media: Implications for sea surface temperature anomalies. Kluwer Academic, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adi, Ditkowski, and Langley Research Center, eds. Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adi, Ditkowski, and Langley Research Center, eds. Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chuen-Yen, Chow, Chang Sin-Chung, and NASA Glenn Research Center, eds. Application of the space-time conservation element and solution element method to one-dimensional advection-diffusion problems. National Aeronautics and Space Administration, Glenn Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Diffusion-advection equation"

1

Clairambault, Jean. "Reaction-Diffusion-Advection Equation." In Encyclopedia of Systems Biology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szymkiewicz, Romuald. "Numerical Solution of the Advection-Diffusion Equation." In Numerical Modeling in Open Channel Hydraulics. Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3674-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Povstenko, Yuriy. "Fractional Advection-Diffusion Equation and Associated Diffusive Stresses." In Solid Mechanics and Its Applications. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15335-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kajishima, Takeo, and Kunihiko Taira. "Finite-Difference Discretization of the Advection-Diffusion Equation." In Computational Fluid Dynamics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45304-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amattouch, M. R., and H. Belhadj. "An Heuristic Scheme for a Reaction Advection Diffusion Equation." In Heuristics for Optimization and Learning. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58930-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lian, Yanping, Gregory J. Wagner, and Wing Kam Liu. "A Meshfree Method for the Fractional Advection-Diffusion Equation." In Meshfree Methods for Partial Differential Equations VIII. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51954-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Povstenko, Yuriy. "Space-Time-Fractional Advection Diffusion Equation in a Plane." In Lecture Notes in Electrical Engineering. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09900-2_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skiba, Yuri N., and Roberto Carlos Cruz-Rodríguez. "Application of Splitting Algorithm for Solving Advection-Diffusion Equation on a Sphere." In Progress in Industrial Mathematics at ECMI 2018. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27550-1_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buske, D., M. T. Vilhena, C. F. Segatto, and R. S. Quadros. "A General Analytical Solution of the Advection–Diffusion Equation for Fickian Closure." In Integral Methods in Science and Engineering. Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8238-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Company, R., E. Defez, L. Jódar, and E. Ponsoda. "A Stable CE—SE Numerical Method for Time-Dependent Advection—Diffusion Equation." In Progress in Industrial Mathematics at ECMI 2006. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_165.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diffusion-advection equation"

1

Marinho, Gisele Moraes, Jader Lugon Júnior, Diego Campos Knupp, Antônio J. Silva Neto, Antônio J. Silva Neto, and Joao Flávio Vieira Vasconcellos. "Inverse Problem in Space Fractional Advection Diffusion Equation." In CNMAC 2019 - XXXIX Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2020. http://dx.doi.org/10.5540/03.2020.007.01.0394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhawan, S., S. Rawat, S. Kumar, and S. Kapoor. "Solution of advection diffusion equation using finite element method." In 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). IEEE, 2011. http://dx.doi.org/10.1109/icmsao.2011.5775634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amali, Onjefu, and Nwojo N. Agwu. "Finite element method for solving the advection-diffusion equation." In 2017 13th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2017. http://dx.doi.org/10.1109/icecco.2017.8333328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Merzari, Elia, W. David Pointer, and Paul Fischer. "A POD-Based Solver for the Advection-Diffusion Equation." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-01022.

Full text
Abstract:
We present a methodology based on proper orthogonal decomposition (POD). We have implemented the POD-based solver in the large eddy simulation code Nek5000 and used it to solve the advection-diffusion equation for temperature in cases where buoyancy is not present. POD allows for the identification of the most energetic modes of turbulence when applied to a sufficient set of snapshots generated through Nek5000. The Navier-Stokes equations are then reduced to a set of ordinary differential equations by Galerkin projection. The flow field is reconstructed and used to advect the temperature on lo
APA, Harvard, Vancouver, ISO, and other styles
5

Popov, V., S. Ahmed, and M. Idris Qureshi. "Simulation of constructed wetland performance using the advection diffusion equation." In WASTE MANAGEMENT 2008. WIT Press, 2008. http://dx.doi.org/10.2495/wm080381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, P., G. Tao, and M. Dong. "Analytical Solution for Unidirectional Advection-diffusion Equation with Variable Viscosities." In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20148656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jannelli, Alessandra, Marianna Ruggieri, and Maria Paola Speciale. "Analytical and numerical solutions of fractional type advection-diffusion equation." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leal Toledo, R. C., V. Ruas, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "A Mixed Least-Squares Formulation for the Transient Advection-Diffusion Equation." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stinguel, L., and R. Guirardello. "Numerical resolution of the advection-diffusion equation with non-linear adsorption isotherm." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5044109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jannelli, Alessandra, Marianna Ruggieri, and Maria Paola Speciale. "Numerical solutions of space-fractional advection-diffusion equation with a source term." In INTERNATIONAL YOUTH SCIENTIFIC CONFERENCE “HEAT AND MASS TRANSFER IN THE THERMAL CONTROL SYSTEM OF TECHNICAL AND TECHNOLOGICAL ENERGY EQUIPMENT” (HMTTSC 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114290.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diffusion-advection equation"

1

CHRISTON, MARK A., THOMAS E. VOTH, and MARIO J. MARTINEZ. Generalized Fourier Analyses of Semi-Discretizations of the Advection-Diffusion Equation. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/805879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hughes, Thomas J., and Garth N. Wells. Conservation Properties for the Galerkin and Stabilised Forms of the Advection-Diffusion and Incompressible Navier-Stokes Equations. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada438123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!