Academic literature on the topic 'Diffusion Combustion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion Combustion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diffusion Combustion"

1

SEKO, Tetsuji, Ryosuke MATSUMOTO, Yoshitomo SHINTANI, Isao ISHIHARA, and Mamoru OZAWA. "Diffusion Combustion in a Tube-Nested Combustor." JSME International Journal Series B 47, no. 2 (2004): 207–13. http://dx.doi.org/10.1299/jsmeb.47.207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Houping, Junrui Shi, Mingming Mao, and Yongqi Liu. "Experimental and numerical studies on combustion characteristics of N 2 -diluted CH 4 and O 2 diffusion combustion in a packed bed." Royal Society Open Science 6, no. 9 (2019): 190492. http://dx.doi.org/10.1098/rsos.190492.

Full text
Abstract:
Experimental and numerical studies were conducted to determine the combustion characteristics of gas diffusion combustion in a porous combustor packed with 2.5 mm or 3.5 mm alumina pellets, special attention being focused on the effect of packed bed height ( h ) on combustion, NO and CO emissions. The pollutant emission of diffusion filtration combustion is studied with different packed bed lengths in the range of 40 mm ≤ h ≤ 240 mm, fixed excess air ratio of 1.88 and fixed gas inlet velocity of 0.06 m s −1 . Results show that both immersed and surface flames coexist in the combustor. Although
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, H. L., J. N. Zhao, K. Zhang, D. B. Wang, and X. L. Wei. "Diffusion Combustion Characteristics of H2/Air in the Micro Porous Media Combustor." Advanced Materials Research 455-456 (January 2012): 413–18. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.413.

Full text
Abstract:
In order to improve thermal to-electric energy conversion efficiency of the micro gas turbine power generation system, a novel micro porous media combustor is designed and experimental investigation on the H2/air diffusion combustion is performed to obtain its combustion characteristics. High efficiency diffusion combustion of H2/air can be stabilized in the very wide operating range, especially at higher excess air ratio. Exhaust gas temperature is markedly improved and meanwhile heat loss ratio is evidently decreased. Moreover, in the certain operating ranges, the greater the combustion ther
APA, Harvard, Vancouver, ISO, and other styles
4

SEKO, Tetsuji, Ryosuke MATSUMOTO, Yoshitomo SHINTANI, Isao ISHIHARA, and Mamoru OZAWA. "D201 DIFFUSION COMBUSTION IN A TUBE-NESTED COMBUSTOR." Proceedings of the International Conference on Power Engineering (ICOPE) 2003.2 (2003): _2–259_—_2–264_. http://dx.doi.org/10.1299/jsmeicope.2003.2._2-259_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sotirchos, Stratis V., and Vasilis N. Burganos. "Intraparticle diffusion and char combustion." Chemical Engineering Science 41, no. 6 (1986): 1599–609. http://dx.doi.org/10.1016/0009-2509(86)85240-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, En Yu, Jing Qin, Xing Xiang, and Jin Xiang Wu. "Influence of Jet Angle on Diffusion Flames in Centrifugal Field." Applied Mechanics and Materials 694 (November 2014): 181–86. http://dx.doi.org/10.4028/www.scientific.net/amm.694.181.

Full text
Abstract:
Diffusion combustion of propane and air in a rotational combustor was simulated by three-dimensional numerical model based on FLUENT. Influence of centrifugal field on the flame shapes and temperatures were discussed under various jet angles changing in the plane perpendicular to the rotational axis. The flame is compressed when the value of jet angle θ is less 90°, otherwise, the flame is stretched when |θ|>90°. When θ<90°, the deflection of flame becomes larger with an increase of θ. As contrasted to positive θ cases, the zones of high temperature in combustion chamber corresponding to
APA, Harvard, Vancouver, ISO, and other styles
7

Valeev, Anton Gaerovich. "Low-Toxic Combustion Chamber with Rich–Lean Diffusion Combustion." International Journal of Emerging Trends in Engineering Research 8, no. 6 (2020): 2745–49. http://dx.doi.org/10.30534/ijeter/2020/85862020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salman, Ahmed M., Ibrahim A. Ibrahim, Hamada M. Gad, and Tharwat M. Farag. "Effects of Air Temperature on Combustion Characteristics of LPG Diffusion Flame." Materials Science Forum 1008 (August 2020): 128–38. http://dx.doi.org/10.4028/www.scientific.net/msf.1008.128.

Full text
Abstract:
In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteris
APA, Harvard, Vancouver, ISO, and other styles
9

Vermes, G., L. E. Barta, and J. M. Bee´r. "Low NOx Emission From an Ambient Pressure Diffusion Flame Fired Gas Turbine Cycle (APGC)." Journal of Engineering for Gas Turbines and Power 125, no. 1 (2002): 46–50. http://dx.doi.org/10.1115/1.1520160.

Full text
Abstract:
The prospects of reduced NOx emission, improved efficiency, stable, and oscillation-free combustion, and reduced construction costs achieved by an “Inverted Brayton Cycle” applied to midsize (0.5 to 5.0 MWe) power plants are discussed. In this cycle, the combustion products of an atmospheric pressure combustor are expanded in the gas turbine to subatmospheric pressure and following heat extraction are compressed back to slightly above the atmospheric, sufficient to enable a controlled fraction of the exhaust gas to be recirculated to the combustor. Due to the larger volume flow rate of the gas
APA, Harvard, Vancouver, ISO, and other styles
10

Jackson, M. D., and A. K. Agrawal. "Active Control of Combustion for Optimal Performance." Journal of Engineering for Gas Turbines and Power 121, no. 3 (1999): 437–43. http://dx.doi.org/10.1115/1.2818492.

Full text
Abstract:
Combustion-zone stoichiometry and fuel-air premixing were actively controlled to optimize the combustor performance over a range of operating conditions. The objective was to maximize the combustion temperature, while maintaining NOx within a specified limit. The combustion system consisted of a premixer located coaxially near the inlet of a water-cooled shroud. The equivalence ratio was controlled by a variable-speed suction fan located downstream. The split between the premixing air and diffusion air was governed by the distance between the premixer and shroud. The combustor performance was
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Diffusion Combustion"

1

Tang, François-David. "Reaction-diffusion fronts in heterogeneous combustion." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104561.

Full text
Abstract:
Heterogeneous flames are modeled in a simplified system where the fuel particles are discrete heat sources embedded in an inert, heat conducting medium. Two asymptotic regimes of flame propagation are found and exhibit differences in both the propagation limits and the front speeds. When the flame thickness is much larger than the characteristic particle spacing, the media containing the sources can be approximated as homogeneous in the reaction zone. In this case, the propagation of the front is defined as being in the continuum regime. In contrast, when the front thickness is on the same sca
APA, Harvard, Vancouver, ISO, and other styles
2

Bouamoul, Amal. "Modélisation mathématique d'une flamme de diffusion méthane-air avec viciation et en configuration contre courant /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1999. http://theses.uqac.ca.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vasudevan, Raghavan. "Thermal diffusion coefficient modeling for high pressure combustion simulations." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1202500574/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nichols, Joseph W. "Simulation and stability analysis of jet diffusion flames /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mandin, Philippe. "Etude d'une flamme de diffusion soumise à un champ de force." Poitiers, 1997. http://www.theses.fr/1997POIT2336.

Full text
Abstract:
L'objetif du present travail est de contribuer a la description du comportement stationnaire et instationnaire d'une flamme de diffusion representative d'un incendie soumise a un champ de force tel que la pesanteur. Un dispositif experimental est mis au point pour caracteriser les proprietes moyennes et fluctuantes d'une flamme de diffusion stabilisee sur un bruleur poreux plan pour diverses conditions de flottabilite (pression variant de 0. 03 a 0. 3mpa, et de gravite de 0 a 12 fois la gravite terrestre). Des lois de comportement ont ete deduites des mesures des proprietes globales et locales
APA, Harvard, Vancouver, ISO, and other styles
6

Wheater, Guy. "Laser tomography of a buoyant turbulent diffusion flame." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lo, Amath. "Diffusion raman spontanée pour la combustion turbulente et les plasmas." Phd thesis, Université de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-01059053.

Full text
Abstract:
Du fait de sa faible efficacité, la diffusion Raman spontanée reste une méthode encore peu utilisée pour l'analyse des écoulements réactifs, en particulier s'ils sont instationnaires comme la combustion turbulente ou les décharges impulsionnelles. Pour de telles situations, une chaîne de mesure a été développée, associée à des procédures d'analyse spécifiques. Cette chaîne de mesure a été évaluée dans deux situations : une flamme de prémélange et une décharge nanoseconde envisagée comme nouveau procédé d'allumage. Les mesures réalisées démontrent la richesse et la nouveauté des résultats que p
APA, Harvard, Vancouver, ISO, and other styles
8

Sagon, Grégory. "Sur des problèmes de réaction-diffusion appliqués à la combustion." Rouen, 2006. http://www.theses.fr/2006ROUES063.

Full text
Abstract:
Ces travaux portent sur des problèmes de réaction-diffusion appliqués en combustion. Dans le cadre du modèle thermodiffusif qui décrit des phénomènes de déflagrations, on étudie les propriétés des ondes progressives : existence, unicité, stabilité, bifurcation, monotonie et limites singulières. Dans le chapitre 1, on considère un modèle de flammes prémélangées dans un domaine extérieur de IRN , sous une hypothèse de décroissance à l’infini sur la vitesse des gaz. Le chapitre 2 est consacrée à l’étude d’un modèle de flammes de diffusion à contre-courant en dimension 1. Le chapitre 3 porte sur u
APA, Harvard, Vancouver, ISO, and other styles
9

Favier, Valérie. "Combustion partiellement prémélangée/stabilisation et extinction d'une flamme de diffusion." Rouen, 2000. http://www.theses.fr/2000ROUES056.

Full text
Abstract:
Ce travail est consacré à l'étude de la stabilisation et l'extinction des flammes non-prémélangées. Une étude préliminaire sur la stabilisation d'une extrémité de flamme dans le sillage de la paroi séparatrice des reactifs initiaux est présentée en simulation numérique directe. Puis, un problème modèle bidimensionnel est construit, à partir de l'interaction entre une flamme triple et une paire de tourbillons contra-rotatifs. Dans ces simulations directes, nous nous focalisons sur les effets des variations du micro-mélange imposées à cette extrémité de flamme de diffusion. Ceci nous permet de m
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Bongsoo. "Investigation of soot formation in opposed flow polymer diffusion flames." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/12172.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Diffusion Combustion"

1

Rehm, Ronald G. Diffusion-controlled reaction in a vortex field. U.S. Dept. of Commerce, National Bureau of Standards, Center for Applied Mathematics and Center for Fire Research, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rehm, Ronald G. Diffusion-controlled reaction in a vortex field. U.S. Dept. of Commerce, National Bureau of Standards, Center for Applied Mathematics and Center for Fire Research, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rehm, Ronald G. Diffusion-controlled reaction in a vortex field. U.S. Dept. of Commerce, National Bureau of Standards, Center for Applied Mathematics and Center for Fire Research, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rehm, Ronald G. Diffusion-controlled reaction in a vortex field. U.S. Dept. of Commerce, National Bureau of Standards, Center for Applied Mathematics and Center for Fire Research, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rehm, Ronald G. Diffusion-controlled reaction in a vortex field. U.S. Dept. of Commerce, National Bureau of Standards, Center for Applied Mathematics and Center for Fire Research, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bahadori, M. Yousef. Effects of buoyancy on gas jet diffusion flames. National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Girimaji, Sharath S. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Institute for Computer Applications in Science and Engineering, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wen, Zhenyu. Combustion and soot modelling of a turbulent kerosene/air diffusion flame. National Library of Canada, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Hung Lee. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-II. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Villasenor, R. Modeling ideally expanded supersonic turbulent jet flows with nonpremixed H2-air combustion. American Institute of Aeronautics and Astronautics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Diffusion Combustion"

1

Date, Anil Waman. "Diffusion Flames." In Analytic Combustion. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1853-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ohtake, K. "Structure of Turbulent Diffusion Flames." In Advanced Combustion Science. Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68228-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Onuma, Y. "Modeling of Turbulent Diffusion Flames." In Advanced Combustion Science. Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68228-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McAllister, Sara, Jyh-Yuan Chen, and A. Carlos Fernandez-Pello. "Non-premixed Flames (Diffusion Flames)." In Fundamentals of Combustion Processes. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7943-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Drummond, Phil. "Group Summary: Counter-Jet Diffusion Flames." In Transition, Turbulence and Combustion. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1034-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Girimaji, Sharath S. "Diffusion-Reaction System Model for Turbulent Combustion." In Transition, Turbulence and Combustion. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1034-1_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boulanger, Joan, and Luc Vervisch. "Diffusion Edge-Flame Quenching." In IUTAM Symposium on Turbulent Mixing and Combustion. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1998-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pitz, R. W., T. M. Brown, and S. P. Nandula. "Raman Scattering Imaging of Opposed Jet Diffusion Flames." In Transition, Turbulence and Combustion. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1034-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seitz, Timo, Ansgar Lechtenberg, and Peter Gerlinger. "Rocket Combustion Chamber Simulations Using High-Order Methods." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.

Full text
Abstract:
Abstract High-order spatial discretizations significantly improve the accuracy of flow simulations. In this work, a multi-dimensional limiting process with low diffusion (MLP$$^\text {ld}$$) and up to fifth order accuracy is employed. The advantage of MLP is that all surrounding volumes of a specific volume may be used to obtain cell interface values. This prevents oscillations at oblique discontinuities and improves convergence. This numerical scheme is utilized to investigate three different rocket combustors, namely a seven injector methane/oxygen combustion chamber, the widely simulated PennState preburner combustor and a single injector chamber called BKC, where pressure oscillations are important.
APA, Harvard, Vancouver, ISO, and other styles
10

Isaac, K. M. "Characteristics of Stretched Hydrogen-Air Diffusion Flames at High Pressures." In Transition, Turbulence and Combustion. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1034-1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diffusion Combustion"

1

Violi, A., A. F. Sarofim, A. D'Anna, and A. D'Alessio. "Modelling of particulate formation in opposed diffusion flames." In 2001 Internal Combustion Engines. SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Mingming, Zhedian Zhang, Weiwei Shao, et al. "Comparative Study of Syngas Mild Combustion Characteristics in Swirl Diffusion and Coflow Diffusion Staged Combustor." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95349.

Full text
Abstract:
MILD combustion is a promising combustion technology for the future gas turbine combustor due to its high combustion efficiency, low exhaust emissions and enhanced combustion stability. It utilizes the concept of exhaust gas recirculation to achieve combustion at reduced temperature and flat thermal field. To examine the role of gas recirculation level on MILD combustion performance, a laboratory-scale axially staged combustor constituted of gas generation zone, mixing zone and MILD combustion zone is presented. To realize ultra-low NOx emissions for syngas characterized by high flame temperat
APA, Harvard, Vancouver, ISO, and other styles
3

BONNEAU, L., P. JOULAIN, J. MOST, and A. FERNANDEZ-PELLO. "Flat plate diffusion flame combustion in microgravity." In 31st Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Torii, S., Toshiaki Yano, and S. Matuda. "COMBUSTION PHENOMENA OF SUBSONIC HYDROGEN JET DIFFUSION FLAME." In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p26.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Young, Gregory, Colin Roberts, and Steven Dunham. "Combustion Behavior of Solid Oxidizer/Gaseous Fuel Diffusion Flames." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DAHM, WERNER, and ROBERT DIBBLE. "Combustion stability limits of coflowing turbulent jet diffusion flames." In 26th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tolpadi, Anil K., Chander Prakash, Harjit Hura, and Hukam C. Mongia. "Advanced Combustion Code: Overall Description, Prediction of a Jet Diffusion Flame and Combustor Flowfields." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-229.

Full text
Abstract:
The Computational Fluid Dynamics (CFD) code that has been used extensively for combustion applications within GE is CONCERT. CONCERT is a fully elliptic body-fitted CFD code based on pressure correction techniques that solves the three-dimensional (3-D) flow in an aircraft engine combustor. The geometry representation is given by single block structured grids. This paper gives an overview and presents some early applications of the Advanced Combustion Code (ACC) which is currently being developed to further advance the use of Computational Combustion Dynamics (CCD) at GE. ACC will have complex
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han, and Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.

Full text
Abstract:
In a carbon-constrained world, Integrated Gasification Combined Cycle (IGCC) systems achieve excellent environmental performance and offer a more economical pre-combustion CO2 removal compared to other coal-based systems. The residual gas after carbon removal is comprised primarily of hydrogen and nitrogen mixtures. Achieving stable combustion of hydrogen-rich fuel mixtures while producing ultra-low NOx emissions (much lower than current diffusion combustion technology) is challenging. The goal of this study was to characterize the stability of lean premixed combustion systems operating with h
APA, Harvard, Vancouver, ISO, and other styles
9

Arai, Norio, Takahisa Yamamoto, and Tomohiko Furuhata. "Numerical Simulation of Low Heating Value Fuel Turbulent Diffusion Combustion." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26113.

Full text
Abstract:
In this study, in order to obtain fundamental data for designing the practical gas turbine combustors in the chemical gas turbine (Ch/GT) combined cycle system and/or other gas turbine systems which utilize low heating value fuel such as coal and biomass gasification syngas, we have simulated low heating value fuel–air turbulent diffusion combustion. The simulated results for the profiles of temperature and species concentrations have been compared with the measured ones. As a reaction model, the flamelet model has been applied to predict the turbulent diffusion combustion characteristics. A f
APA, Harvard, Vancouver, ISO, and other styles
10

Belokon, Alexandr A., Konstantin M. Khritov, Lev A. Klyachko, Sergey A. Tschepin, Vladimir M. Zakharov, and George Opdyke. "Prediction of Combustion Efficiency and NOx Levels for Diffusion Flame Combustors in HAT Cycles." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30609.

Full text
Abstract:
Diffusion flame combustor test results are presented for methane firing in steam/air mixtures containing up to 20% steam. The tests were conducted at atmospheric pressure with combustor inlet temperatures up to 700K. Steam and air were fully premixed before combustion. Combustion efficiency and NOX levels were measured. The well-known Θ loading parameter was modified by replacing the combustor inlet temperature with the flame temperature. The flame temperature was defined as the stoichiometric temperature of the steam/air mixture. The combustion efficiency obtained with and without steam corre
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diffusion Combustion"

1

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6922826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5833755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10117797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10110970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10165611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grcar, Joseph F. An Explicit Runge-Kutta Iteration for Diffusion in the Low MachNumber Combustion Code. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/927034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tran, P. X., F. P. White, M. P. Mathur, and J. M. Ekmann. NO{sub x} emissions of a jet diffusion flame which is surrounded by a shroud of combustion air. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/285495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!