To see the other types of publications on this topic, follow the link: Diffusion controlled reactions.

Journal articles on the topic 'Diffusion controlled reactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diffusion controlled reactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ZHOU, Guo-Qiang, and Wei-Zhu ZHONG. "Diffusion-Controlled Reactions of Enzymes." European Journal of Biochemistry 128, no. 2-3 (March 3, 2005): 383–87. http://dx.doi.org/10.1111/j.1432-1033.1982.tb06976.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burlatsky, S. F., and G. S. Oshanin. "Diffusion-controlled reactions with polymers." Physics Letters A 145, no. 1 (March 1990): 61–65. http://dx.doi.org/10.1016/0375-9601(90)90278-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berezhkovskii, A. M., Yu A. Makhnovskii, and R. A. Suris. "Kinetics of diffusion-controlled reactions." Chemical Physics 137, no. 1-3 (October 1989): 41–49. http://dx.doi.org/10.1016/0301-0104(89)87091-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ayscough, Peter B., Keith D. Bartle, Anthony A. Clifford, and Derek Mills. "Measurement of diffusion coefficients for diffusion-controlled reactions." International Journal of Chemical Kinetics 20, no. 11 (November 1988): 849–55. http://dx.doi.org/10.1002/kin.550201103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mazor, Michael H., Chung F. Wong, J. Andrew McCammon, John M. Deutch, and George Whitesides. "Effective molarity in diffusion-controlled reactions." Journal of Physical Chemistry 94, no. 9 (May 1990): 3807–12. http://dx.doi.org/10.1021/j100372a084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moreau, M., G. Oshanin, O. Bénichou, and M. Coppey. "Stochastic theory of diffusion-controlled reactions." Physica A: Statistical Mechanics and its Applications 327, no. 1-2 (September 2003): 99–104. http://dx.doi.org/10.1016/s0378-4371(03)00458-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szabo, Attila, Robert Zwanzig, and Noam Agmon. "Diffusion-Controlled Reactions with Mobile Traps." Physical Review Letters 61, no. 21 (November 21, 1988): 2496–99. http://dx.doi.org/10.1103/physrevlett.61.2496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Argyrakis, Panos, Harvey Gould, and Jan Tobochnik. "Simulation of Diffusion-Controlled Chemical Reactions." Computers in Physics 6, no. 5 (1992): 525. http://dx.doi.org/10.1063/1.4823102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Durning, Chris, and Ben O’Shaughnessy. "Diffusion controlled reactions at an interface." Journal of Chemical Physics 88, no. 11 (June 1988): 7117–28. http://dx.doi.org/10.1063/1.454362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mita, Itaru, and Kazuyuki Horie. "Diffusion-Controlled Reactions in Polymer Systems." Journal of Macromolecular Science, Part C: Polymer Reviews 27, no. 1 (February 1987): 91–169. http://dx.doi.org/10.1080/07366578708078641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sokolov, I. M., and A. Blumen. "Memory Effects in Diffusion-Controlled Reactions." Europhysics Letters (EPL) 27, no. 7 (September 1, 1994): 495–500. http://dx.doi.org/10.1209/0295-5075/27/7/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Van Kampen, N. G. "Cluster expansions for diffusion-controlled reactions." International Journal of Quantum Chemistry 22, S16 (June 19, 2009): 101–15. http://dx.doi.org/10.1002/qua.560220812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Klinger, Leonid, Yves Bréchet, and Gary R. Purdy. "Interface Diffusion Controlled Reactions in Multilayers." Materials Science Forum 294-296 (November 1998): 139–44. http://dx.doi.org/10.4028/www.scientific.net/msf.294-296.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sokolov, I. M., and A. Blumen. "Diffusion-controlled reactions in lamellar systems." Physical Review A 43, no. 6 (March 1, 1991): 2714–19. http://dx.doi.org/10.1103/physreva.43.2714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kaminskii, V. A., and Ye Ye Brun. "Diffusion-controlled reactions in polymeric solutions." Polymer Science U.S.S.R. 32, no. 10 (January 1990): 2080–87. http://dx.doi.org/10.1016/0032-3950(90)90363-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

von Ferber, C., and Yu Holovatch. "Diffusion-controlled reactions in presence of polymers." Journal of Molecular Liquids 93, no. 1-3 (September 2001): 155–58. http://dx.doi.org/10.1016/s0167-7322(01)00224-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bachorczyk, R., M. Danielewski, P. K. Datta, and R. Filipek. "Model of heterogenous reactions controlled by diffusion." Journal of Molecular Liquids 86, no. 1-3 (June 2000): 61–67. http://dx.doi.org/10.1016/s0167-7322(99)00125-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fãtu, D. "Modelling of diffusion-controlled solid-solid reactions." Journal of Thermal Analysis 38, no. 4 (April 1992): 935–41. http://dx.doi.org/10.1007/bf01979426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kang, K., and S. Redner. "Fluctuation-dominated kinetics in diffusion-controlled reactions." Physical Review A 32, no. 1 (July 1, 1985): 435–47. http://dx.doi.org/10.1103/physreva.32.435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

O’Shaughnessy, Ben. "Diffusion‐controlled reactions in entangled polymer systems." Journal of Chemical Physics 94, no. 5 (March 1991): 4042–54. http://dx.doi.org/10.1063/1.460680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

ben‐Avraham, Daniel. "Computer simulation methods for diffusion‐controlled reactions." Journal of Chemical Physics 88, no. 2 (January 15, 1988): 941–48. http://dx.doi.org/10.1063/1.454174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

McCammon, J. Andrew, Russell J. Bacquet, Stuart A. Allison, and Scott H. Northrup. "Trajectory simulation studies of diffusion-controlled reactions." Faraday Discussions of the Chemical Society 83 (1987): 213. http://dx.doi.org/10.1039/dc9878300213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dong, W., F. Baros, and J. C. André. "Non-Markovian Effect on Diffusion-Controlled Reactions." Berichte der Bunsengesellschaft für physikalische Chemie 94, no. 3 (March 1990): 269–74. http://dx.doi.org/10.1002/bbpc.19900940315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fredrickson, Glenn H. "Diffusion-Controlled Reactions at Polymer-Polymer Interfaces." Physical Review Letters 76, no. 18 (April 29, 1996): 3440–43. http://dx.doi.org/10.1103/physrevlett.76.3440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Allison, S. A., S. H. Northrup, and J. A. McCammon. "Extended Brownian dynamics of diffusion controlled reactions." Journal of Chemical Physics 83, no. 6 (September 15, 1985): 2894–99. http://dx.doi.org/10.1063/1.449242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Senapati, Sanjib, Chung F. Wong, and J. Andrew McCammon. "Finite concentration effects on diffusion-controlled reactions." Journal of Chemical Physics 121, no. 16 (2004): 7896. http://dx.doi.org/10.1063/1.1795132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

López-Quintela, M. Arturo, and M. Carmen Buján-Núñez. "Computer simulation of partially diffusion-controlled reactions." Chemical Physics 157, no. 3 (November 1991): 307–13. http://dx.doi.org/10.1016/0301-0104(91)89024-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Karamitros, M., S. Luan, M. A. Bernal, J. Allison, G. Baldacchino, M. Davidkova, Z. Francis, et al. "Diffusion-controlled reactions modeling in Geant4-DNA." Journal of Computational Physics 274 (October 2014): 841–82. http://dx.doi.org/10.1016/j.jcp.2014.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sokolov, I. M., and A. Blumen. "Diffusion-controlled reactions in nonstoichiometrical layered systems." Physica A: Statistical Mechanics and its Applications 191, no. 1-4 (December 1992): 177–81. http://dx.doi.org/10.1016/0378-4371(92)90523-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Villa, I., F. Sanchez, T. Lopes, P. Lopez-Cornejo, and P. Perez-Tejeda. "Photoinduced Electron-Transfer Reactions: A Study of the Diffusion-Controlled and Activation-Diffusion-Controlled Processes." Journal of Physical Chemistry A 114, no. 30 (August 5, 2010): 7912–17. http://dx.doi.org/10.1021/jp104681n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Masson, Eric, and Manfred Schlosser. "Are reactions between allylpotassiums and halotrimethylsilanes diffusion-controlled?" Arkivoc 2015, no. 4 (June 1, 2015): 139–50. http://dx.doi.org/10.3998/ark.5550190.p009.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Abad, E., G. Nicolis, Jonathan L. Bentz, and John J. Kozak. "Synchronous vs. asynchronous dynamics of diffusion-controlled reactions." Physica A: Statistical Mechanics and its Applications 326, no. 1-2 (August 2003): 69–87. http://dx.doi.org/10.1016/s0378-4371(03)00272-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cukier, R. I. "Diffusion-controlled reactions with ellipsoids: effective medium theory." Journal of Physical Chemistry 89, no. 2 (January 1985): 246–52. http://dx.doi.org/10.1021/j100248a014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Roa, Rafael, Toni Siegl, Won Kyu Kim, and Joachim Dzubiella. "Product interactions and feedback in diffusion-controlled reactions." Journal of Chemical Physics 148, no. 6 (February 14, 2018): 064705. http://dx.doi.org/10.1063/1.5016608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Torquato, S., and C. L. Y. Yeong. "Universal scaling for diffusion-controlled reactions among traps." Journal of Chemical Physics 106, no. 21 (June 1997): 8814–20. http://dx.doi.org/10.1063/1.473941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wöll, Dominik, Nikita Lukzen, and Ulrich E. Steiner. "Diffusion-controlled sensitization of photocleavage reactions on surfaces." Photochemical & Photobiological Sciences 11, no. 3 (2012): 533. http://dx.doi.org/10.1039/c1pp05319a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Achilias, D., and C. Kiparissides. "Modeling of diffusion-controlled free-radical polymerization reactions." Journal of Applied Polymer Science 35, no. 5 (April 1988): 1303–23. http://dx.doi.org/10.1002/app.1988.070350516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Skrzypczak, A., and P. Neta. "Diffusion-Controlled Electron-Transfer Reactions in Ionic Liquids." Journal of Physical Chemistry A 107, no. 39 (October 2003): 7800–7803. http://dx.doi.org/10.1021/jp030416+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Condat, C. A., G. J. Sibona, and C. E. Budde. "Steady state in two-dimensional diffusion-controlled reactions." Journal of Statistical Physics 89, no. 1-2 (October 1997): 369–77. http://dx.doi.org/10.1007/bf02770770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Van Beijeren, H., W. Dong, and L. Bocquet. "Diffusion-controlled reactions: A revisit of Noyes’ theory." Journal of Chemical Physics 114, no. 14 (April 8, 2001): 6265–75. http://dx.doi.org/10.1063/1.1350642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Traytak, Sergey D., and Masanori Tachiya. "Competition effect in diffusion-controlled reactions between ions." Journal of Physics: Condensed Matter 19, no. 6 (January 22, 2007): 065109. http://dx.doi.org/10.1088/0953-8984/19/6/065109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

López-Quintela, M. A., J. C. Pérez-Moure, M. C. Buján-Núñez, and J. Samios. "Influence of fractal dimension on diffusion-controlled reactions." Chemical Physics Letters 138, no. 5 (July 1987): 476–80. http://dx.doi.org/10.1016/0009-2614(87)80544-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Harmon, L. A., L. Li, L. W. Anacker, and R. Kopelman. "Segregation measures for diffusion-controlled A+B reactions." Chemical Physics Letters 163, no. 6 (November 1989): 463–68. http://dx.doi.org/10.1016/0009-2614(89)85169-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

De Roo, Tony, Geraldine J. Heynderickx, and Guy B. Marin. "Diffusion-controlled reactions in vinyl chloride suspension polymerization." Macromolecular Symposia 206, no. 1 (February 2004): 215–28. http://dx.doi.org/10.1002/masy.200450217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

DEWEY, T. GREGORY. "CHEMICALLY-CONTROLLED REACTION KINETICS ON FRACTALS: APPLICATION TO HYDROGEN EXCHANGE IN LYSOZYME." Fractals 03, no. 02 (June 1995): 251–67. http://dx.doi.org/10.1142/s0218348x95000217.

Full text
Abstract:
The effect of time-dependent diffusional rate constants on chemically-controlled reactions in solution is considered. A general mechanism is examined that consists of a two step process. First the reactants diffuse together to form an “encounter complex.” This is followed by the collapse of the complex to the final product. The first step is diffusion controlled and the second step is chemically controlled. For reactions in restricted geometries or on fractals the rate constants associated with the diffusive process will scale with time as t−h where h is a constant between 0 and 1. The chemical processes are assumed to have time-independent rate constants. For reactions in which the encounter complex achieves a steady state, the differential equations governing the time course of the reaction can be solved exactly. At short times, the concentration of the reactants decays exponentially, reflecting the time constant of the chemical processes. At longer times, the decreasing diffusive rate constants result in the process being diffusion controlled. A stretched exponential of the form, exp{−kt1−h}, is observed. Approximate solutions for the pre-steady state behavior of the system are also determined using a Liouville transformation and corresponding asymptotic expansions. The short time regime shows power law decays of reactants. These decays will depend both on the dimensionality of the system as well as on the value of the rate constants associated with individual steps in the mechanism. Conditions can exist where a transformation to logarithmic oscillations will occur. Using this theoretical foundation a model is developed to analyze the kinetics of hydrogen isotope exchange kinetics in proteins. The exchange reaction is assume to occur in the boundary volume of the protein. Using the predicted fractal dimension of this boundary volume, scaling exponents are calculated and used as an unadjusted parameter. Highly accurate fits to the experimental data are achieved and activation energies are obtained that reflect the energetics of isotope exchange. This approach allows chemical kinetic behavior to be predicted from X-ray structure information.
APA, Harvard, Vancouver, ISO, and other styles
46

Kalnin, Yu H., and P. Zapol. "Effective diffusion coefficient and diffusion-controlled reactions in insulating solids with defects." Radiation Effects and Defects in Solids 137, no. 1-4 (December 1995): 295–97. http://dx.doi.org/10.1080/10420159508222738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dong, W., and J. C. Andre. "Diffusion‐controlled reactions. II. An approach based on a generalized diffusion equation." Journal of Chemical Physics 101, no. 1 (July 1994): 299–306. http://dx.doi.org/10.1063/1.468183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Abromeit, C. "Self-Organization by Diffusion-Controlled Reactions in Irradiated Materials." Defect and Diffusion Forum 66-69 (January 1991): 1153–68. http://dx.doi.org/10.4028/www.scientific.net/ddf.66-69.1153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Changrui, Zhang,
Yang Yiwen, and Zhang Guang. "KINETIC MODEL FOR SOLID STATE REACTIONS CONTROLLED BY DIFFUSION." Acta Physico-Chimica Sinica 4, no. 05 (1988): 539–44. http://dx.doi.org/10.3866/pku.whxb19880520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Achilias, Dimitris S. "A Review of Modeling of Diffusion Controlled Polymerization Reactions." Macromolecular Theory and Simulations 16, no. 4 (May 25, 2007): 319–47. http://dx.doi.org/10.1002/mats.200700003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography