Academic literature on the topic 'Diffusion equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diffusion equations"

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bögelein, Verena, Frank Duzaar, Paolo Marcellini, and Stefano Signoriello. "Nonlocal diffusion equations." Journal of Mathematical Analysis and Applications 432, no. 1 (2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SOKOLOV, I. M., and A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS." Fluctuation and Noise Letters 05, no. 02 (2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.

Full text
Abstract:
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. The forms of such equations might differ with respect to the position of the corresponding fractional operator in addition to or instead of the whole-number derivative in the Fick's equation. For processes lacking simple scaling the corresponding description may be given by distributed-order equations. In the present paper different forms of distributed-order diffusion equations are considered. The properties of their solutions are discussed
APA, Harvard, Vancouver, ISO, and other styles
4

Zubair, Muhammad. "Fractional diffusion equations and anomalous diffusion." Contemporary Physics 59, no. 4 (2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fila, Marek, and Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations." Czechoslovak Mathematical Journal 40, no. 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS." Chemical Engineering Communications 114, no. 1 (1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kern, Peter, Svenja Lage, and Mark M. Meerschaert. "Semi-fractional diffusion equations." Fractional Calculus and Applied Analysis 22, no. 2 (2019): 326–57. http://dx.doi.org/10.1515/fca-2019-0021.

Full text
Abstract:
Abstract It is well known that certain fractional diffusion equations can be solved by the densities of stable Lévy motions. In this paper we use the classical semigroup approach for Lévy processes to define semi-fractional derivatives, which allows us to generalize this statement to semistable Lévy processes. A Fourier series approach for the periodic part of the corresponding Lévy exponents enables us to represent semi-fractional derivatives by a Grünwald-Letnikov type formula. We use this formula to calculate semi-fractional derivatives and solutions to semi-fractional diffusion equations n
APA, Harvard, Vancouver, ISO, and other styles
9

Wei, G. W. "Generalized reaction–diffusion equations." Chemical Physics Letters 303, no. 5-6 (1999): 531–36. http://dx.doi.org/10.1016/s0009-2614(99)00270-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Freidlin, Mark. "Coupled Reaction-Diffusion Equations." Annals of Probability 19, no. 1 (1991): 29–57. http://dx.doi.org/10.1214/aop/1176990535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Diffusion equations"

1

Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.

Full text
Abstract:
Ce mémoire de thèse est consacrée à l'étude des problèmes d'évolution où la dynamique est régi par l'opérateur de diffusion de sous-gradient. Nous nous intéressons à deux types de problèmes d'évolution. Le premier problème est régi par un opérateur local de type Leray-Lions avec un domaine borné. Dans ce problème, l'opérateur est maximal monotone et ne satisfait pas la condition standard de contrôle de la croissance polynomiale. Des exemples typiques apparaît dans l'étude de fluide non-Neutonian et aussi dans la description de la dynamique du flux de sous-gradient. Pour étudier le problème nou
APA, Harvard, Vancouver, ISO, and other styles
2

Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.

Full text
Abstract:
This thesis focuses on the long time behaviour of solutions to Fisher-KPP reaction-diffusion equations involving fractional diffusion. This type of equation arises, for example, in spatial propagation or spreading of biological species (rats, insects,...). In population dynamics, the quantity under study stands for the density of the population. It is well-known that, under some specific assumptions, the solution tends to a stable state of the evolution problem, as time goes to infinity. In other words, the population invades the medium, which corresponds to the survival of the species,
APA, Harvard, Vancouver, ISO, and other styles
3

Prehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.

Full text
Abstract:
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Ma
APA, Harvard, Vancouver, ISO, and other styles
4

Fei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ninomiya, Hirokazu. "Separatrices of competition-diffusion equations." 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである.<br>Kyoto Journal of Mathematics, vol35(3), pp.539-567, 1995, http://projecteuclid.org/euclid.kjm/1250518709<br>Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(理学)<br>甲第5884号<br>理博第1591号<br>新制||理||889(附属図書館)<br>UT51-95-D203<br>京都大学大学院工学研究科数学専攻<br>(主査)教授 西田 孝明, 教授 渡辺 信三, 教授 岩崎 敷久<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
7

Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.

Full text
Abstract:
Cette thèse est consacrée à l'étude du comportement en temps long, et plus précisément de phénomènes de propagation rapide, des équations de réaction-diffusion de type Kisher-KPP avec diffusion fractionnaire. Ces équations modélisent, par exemple, la propagation d'espèces biologiques. Sous certaines hypothèses, la population envahit le milieu et nous voulons comprendre à quelle vitesse cette invasion a lieu. Pour répondre à cette question, nous avons mis en place une nouvelle méthode et nous l'appliquons à différents modèles. Dans une première partie, nous étudions deux problèmes d'évolution c
APA, Harvard, Vancouver, ISO, and other styles
8

Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.

Full text
Abstract:
Cette thèse est consacrée à l'étude des équations de réaction diffusion non-locale du type $u_(t)-(\int_(\R)J(x-y)[u(y)-u(x)]dy)=f(u)$. Ces équations non-linéaires apparaissent naturellement en physique et en biologie. On s'intéresse plus particulièrement aux propriétés (existence, unicité, monotonie) des solutions du type front progressif. Trois classes de non-linéarités $f$ (bistable, ignition, monostable) sont étudiées. L'existence dans les cas bistable et ignition est obtenue via une technique d'homotopie. Le cas monostable nécessite une autre approche. L'existence est obtenue via une appr
APA, Harvard, Vancouver, ISO, and other styles
10

Cifani, Simone. "On nonlinear fractional convection - diffusion equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Diffusion equations"

1

Zhuoqun, Wu, ed. Nonlinear diffusion equations. World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seizō, Itō. Diffusion equations. American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Favini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Favini, Angelo. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Masao, Nagasawa. Schrödinger equations and diffusion theory. Birkhäuser Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nagasawa, Masao. Schrödinger Equations and Diffusion Theory. Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nagasawa, Masao. Schrödinger Equations and Diffusion Theory. Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Yong. Fractional Diffusion and Wave Equations. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-74031-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

J, Brown K., Lacey A. A, and Heriot-Watt University. Dept. of Mathematics., eds. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Clarendon Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Diffusion equations"

1

Linge, Svein, and Hans Petter Langtangen. "Diffusion Equations." In Finite Difference Computing with PDEs. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55456-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shewmon, Paul. "Diffusion Equations." In Diffusion in Solids. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48206-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Itô, Seizô. "Diffusion Equations." In Kôsaku Yosida Collected Papers. Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-65859-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation." In Encyclopedia of Systems Biology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dagdug, Leonardo, Jason Peña, and Ivan Pompa-García. "Reaction-Diffusion Equations." In Diffusion Under Confinement. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-46475-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stroock, Daniel W., and S. R. Srinivasa Varadhan. "Stochastic Differential Equations." In Multidimensional Diffusion Processes. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-28999-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eidelman, Samuil D., Anatoly N. Kochubei, and Stepan D. Ivasyshen. "Fractional Diffusion Equations." In Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7844-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jüngel, Ansgar. "Drift-Diffusion Equations." In Transport Equations for Semiconductors. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mei, Zhen. "Reaction-Diffusion Equations." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Da Prato, Giuseppe. "Reaction-Diffusion Equations." In Kolmogorov Equations for Stochastic PDEs. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diffusion equations"

1

Hassanpour, H., E. Nadernejad, and H. Miar. "Image enhancement using diffusion equations." In 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA). IEEE, 2007. http://dx.doi.org/10.1109/isspa.2007.4555608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popescu, Emil, Cristiana Dumitrache, Vasile Mioc, and Nedelia A. Popescu. "Fractional diffusion equations and applications." In Flows, Boundaries, Interactions. AIP, 2007. http://dx.doi.org/10.1063/1.2790342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hanyga, Andrzej. "Fractional diffusion and wave equations." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Quintana Murillo, Joaqui´n, and Santos Bravo Yuste. "On an Explicit Difference Method for Fractional Diffusion and Diffusion-Wave Equations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86625.

Full text
Abstract:
An explicit difference scheme for solving fractional diffusion and fractional diffusion-wave equations, in which the fractional derivative is in the Caputo form, is considered. The two equations are studied separately: for the fractional diffusion equation, the L1 discretization formula is employed, whereas the L2 discretization formula is used for the fractional diffusion-wave equation. Its accuracy is similar to other well-known explicit difference schemes, but its region of stability is larger. The stability analysis is carried out by means of a procedure similar to the standard von Neumann
APA, Harvard, Vancouver, ISO, and other styles
5

ISHII, HITOSHI, and HIROYOSHI MITAKE. "TWO REMARKS ON PERIODIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SALVARANI, F., and J. L. VÁZQUEZ. "FROM KINETIC SYSTEMS TO DIFFUSION EQUATIONS." In Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hwang, Jeehyun, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee, and Noseong Park. "Climate Modeling with Neural Diffusion Equations." In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021. http://dx.doi.org/10.1109/icdm51629.2021.00033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koprucki, Thomas, and Klaus Gartner. "Discretization scheme for drift-diffusion equations with strong diffusion enhancement." In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Poláčik, P. "SYMMETRY PROPERTIES OF POSITIVE SOLUTIONS OF PARABOLIC EQUATIONS: A SURVEY." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GEORGI, M., and N. JANGLE. "SPIRAL WAVE MOTION IN REACTION-DIFFUSION SYSTEMS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0108.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diffusion equations"

1

Wang, Chi-Jen. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1226552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dai, William. Interface-aware Methods for Diffusion Equations. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2323520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kallianput, G., I. Mitoma, and R. L. Wolpert. Diffusion Equations in Duals of Nuclear Spaces. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada200078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada190319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hale, Jack K., and Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada185804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wenocur, Michael L. Diffusion First Passage Times: Approximations and Related Differential Equations,. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada185592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fields, Mary A. Modeling Large Scale Troop Movement Using Reaction Diffusion Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada270701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heineike, Benjamin M. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada403766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmed, Hoda F. Gegenbauer Collocation Algorithm for Solving Twodimensional Time-space Fractional Diffusion Equations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2019. http://dx.doi.org/10.7546/crabs.2019.08.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knapp, Charles E., and Charles W. Cranfill. Comparison of Numeric to Analytic Solutions for a Class of Nonlinear Diffusion Equations. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/1193616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!