Academic literature on the topic 'Diffusion equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diffusion equations"
Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.
Full textBögelein, Verena, Frank Duzaar, Paolo Marcellini, and Stefano Signoriello. "Nonlocal diffusion equations." Journal of Mathematical Analysis and Applications 432, no. 1 (2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.
Full textSOKOLOV, I. M., and A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS." Fluctuation and Noise Letters 05, no. 02 (2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.
Full textZubair, Muhammad. "Fractional diffusion equations and anomalous diffusion." Contemporary Physics 59, no. 4 (2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.
Full textGurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.
Full textFila, Marek, and Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations." Czechoslovak Mathematical Journal 40, no. 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.
Full textKOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS." Chemical Engineering Communications 114, no. 1 (1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.
Full textKern, Peter, Svenja Lage, and Mark M. Meerschaert. "Semi-fractional diffusion equations." Fractional Calculus and Applied Analysis 22, no. 2 (2019): 326–57. http://dx.doi.org/10.1515/fca-2019-0021.
Full textWei, G. W. "Generalized reaction–diffusion equations." Chemical Physics Letters 303, no. 5-6 (1999): 531–36. http://dx.doi.org/10.1016/s0009-2614(99)00270-5.
Full textFreidlin, Mark. "Coupled Reaction-Diffusion Equations." Annals of Probability 19, no. 1 (1991): 29–57. http://dx.doi.org/10.1214/aop/1176990535.
Full textDissertations / Theses on the topic "Diffusion equations"
Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Full textCoulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Full textPrehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Full textFei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.
Full textGrant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.
Full textNinomiya, Hirokazu. "Separatrices of competition-diffusion equations." 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.
Full textCoulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Full textKnaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Full textCoville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.
Full textCifani, Simone. "On nonlinear fractional convection - diffusion equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.
Full textBooks on the topic "Diffusion equations"
Favini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Full textFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012.
Find full textMasao, Nagasawa. Schrödinger equations and diffusion theory. Birkhäuser Verlag, 1993.
Find full textNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.
Full textNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.
Full textLam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.
Full textZhou, Yong. Fractional Diffusion and Wave Equations. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-74031-2.
Full textJ, Brown K., Lacey A. A, and Heriot-Watt University. Dept. of Mathematics., eds. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Clarendon Press, 1990.
Find full textBook chapters on the topic "Diffusion equations"
Linge, Svein, and Hans Petter Langtangen. "Diffusion Equations." In Finite Difference Computing with PDEs. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55456-3_3.
Full textShewmon, Paul. "Diffusion Equations." In Diffusion in Solids. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48206-4_1.
Full textItô, Seizô. "Diffusion Equations." In Kôsaku Yosida Collected Papers. Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-65859-7_6.
Full textKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation." In Encyclopedia of Systems Biology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Full textDagdug, Leonardo, Jason Peña, and Ivan Pompa-García. "Reaction-Diffusion Equations." In Diffusion Under Confinement. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-46475-1_13.
Full textStroock, Daniel W., and S. R. Srinivasa Varadhan. "Stochastic Differential Equations." In Multidimensional Diffusion Processes. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-28999-2_6.
Full textEidelman, Samuil D., Anatoly N. Kochubei, and Stepan D. Ivasyshen. "Fractional Diffusion Equations." In Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7844-9_5.
Full textJüngel, Ansgar. "Drift-Diffusion Equations." In Transport Equations for Semiconductors. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8_5.
Full textMei, Zhen. "Reaction-Diffusion Equations." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.
Full textDa Prato, Giuseppe. "Reaction-Diffusion Equations." In Kolmogorov Equations for Stochastic PDEs. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.
Full textConference papers on the topic "Diffusion equations"
Hassanpour, H., E. Nadernejad, and H. Miar. "Image enhancement using diffusion equations." In 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA). IEEE, 2007. http://dx.doi.org/10.1109/isspa.2007.4555608.
Full textPopescu, Emil, Cristiana Dumitrache, Vasile Mioc, and Nedelia A. Popescu. "Fractional diffusion equations and applications." In Flows, Boundaries, Interactions. AIP, 2007. http://dx.doi.org/10.1063/1.2790342.
Full textHanyga, Andrzej. "Fractional diffusion and wave equations." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0017.
Full textQuintana Murillo, Joaqui´n, and Santos Bravo Yuste. "On an Explicit Difference Method for Fractional Diffusion and Diffusion-Wave Equations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86625.
Full textISHII, HITOSHI, and HIROYOSHI MITAKE. "TWO REMARKS ON PERIODIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0005.
Full textSALVARANI, F., and J. L. VÁZQUEZ. "FROM KINETIC SYSTEMS TO DIFFUSION EQUATIONS." In Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0055.
Full textHwang, Jeehyun, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee, and Noseong Park. "Climate Modeling with Neural Diffusion Equations." In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021. http://dx.doi.org/10.1109/icdm51629.2021.00033.
Full textKoprucki, Thomas, and Klaus Gartner. "Discretization scheme for drift-diffusion equations with strong diffusion enhancement." In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316560.
Full textPoláčik, P. "SYMMETRY PROPERTIES OF POSITIVE SOLUTIONS OF PARABOLIC EQUATIONS: A SURVEY." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0009.
Full textGEORGI, M., and N. JANGLE. "SPIRAL WAVE MOTION IN REACTION-DIFFUSION SYSTEMS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0108.
Full textReports on the topic "Diffusion equations"
Wang, Chi-Jen. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1226552.
Full textDai, William. Interface-aware Methods for Diffusion Equations. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2323520.
Full textKallianput, G., I. Mitoma, and R. L. Wolpert. Diffusion Equations in Duals of Nuclear Spaces. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada200078.
Full textFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada190319.
Full textHale, Jack K., and Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada185804.
Full textWenocur, Michael L. Diffusion First Passage Times: Approximations and Related Differential Equations,. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada185592.
Full textFields, Mary A. Modeling Large Scale Troop Movement Using Reaction Diffusion Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada270701.
Full textHeineike, Benjamin M. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada403766.
Full textAhmed, Hoda F. Gegenbauer Collocation Algorithm for Solving Twodimensional Time-space Fractional Diffusion Equations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2019. http://dx.doi.org/10.7546/crabs.2019.08.04.
Full textKnapp, Charles E., and Charles W. Cranfill. Comparison of Numeric to Analytic Solutions for a Class of Nonlinear Diffusion Equations. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/1193616.
Full text