Academic literature on the topic 'Diffusion (physique) – Processus stochastiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion (physique) – Processus stochastiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diffusion (physique) – Processus stochastiques"
Hao, Rui. "Efficience technique, croissance économique et égalité régionale en Chine : une approche de frontières stochastiques*." Articles 83, no. 3 (May 28, 2008): 297–320. http://dx.doi.org/10.7202/018112ar.
Full textBrosseau, Marc. "Réflexion sur l’influence éventuelle de la géographie française dans l’évolution de la géographie scolaire au Québec." Cahiers de géographie du Québec 38, no. 103 (April 12, 2005): 39–56. http://dx.doi.org/10.7202/022406ar.
Full textBoczar, J., A. Dorobczynski, and J. Miakotoi. "Modèle de transfert et de diffusion de masse dans un écoulement, en présence de gradients de vitesse et de gradients du coefficient de diffusion turbulente." Revue des sciences de l'eau 5, no. 3 (April 12, 2005): 353–79. http://dx.doi.org/10.7202/705136ar.
Full textQuéinnec, Jean-Paul. "Dispositif cartographique du son pour une scène sans bord." Recherches sémiotiques 36, no. 1-2 (September 7, 2018): 271–94. http://dx.doi.org/10.7202/1051188ar.
Full textLeite, José Yvan Pereira, and André Luis Calado Araújo. "Editorial." HOLOS 4 (November 29, 2010): 1. http://dx.doi.org/10.15628/holos.2010.489.
Full textHammad, Manar. "L'Université de Vilnius: exploration sémiotique de l’architecture et des plans." Semiotika 10 (December 22, 2014): 9–115. http://dx.doi.org/10.15388/semiotika.2014.16756.
Full textDunoyer, Christiane. "Alpes." Anthropen, 2020. http://dx.doi.org/10.17184/eac.anthropen.124.
Full textDunoyer, Christiane. "Monde alpin." Anthropen, 2019. http://dx.doi.org/10.17184/eac.anthropen.101.
Full textDissertations / Theses on the topic "Diffusion (physique) – Processus stochastiques"
Garnier, Josselin. "Ondes en milieux aleatoires." Palaiseau, Ecole polytechnique, 1996. http://www.theses.fr/1996EPXX0035.
Full textEl, Saadi Nadjia. "Modélisation et études mathématique et informatique de populations structurées par des variables aléatoires. : Application à l'agrégation du phytoplancton." Pau, 2004. http://www.theses.fr/2004PAUU3018.
Full textThe role of aggregates in marine food webs and vertical transport processes is now well recognized. However the mechanisms by which aggregates form and the dynamics governing their formation are not well studied and remain at time unclear. Coagulation theory has more recently been applied to describe phytoplankton aggregates formation. However, studies at small scales of marine particles have emphasized biological mechanisms. In this work, we present the mathematical stochastic modeling of phytoplankton cell, that takes into account the biological mechanisms at small scales. We investigate the mathematical analysis of the model built and present some individual-based simulations to complete the mathematical study
Quintard, Hélène. "Symétries d'équations aux dérivées partielles, calcul stochastique, applications à la physique mathématique et à la finance." Rouen, 2015. http://www.theses.fr/2015ROUES022.
Full textStochastic differential equations are a powerfull tool of mathematics. Applications range from finance or physics to biology. Those models can be very efficient to modelise numerous phenomenons where uncertainties are involved. In order to have a better understanding of those stochastic differential equations, this work studies the solutions of a subclass, called Bernstein (or Schrödinger) processes. Those processes are linked to the heat equation by construction. Two types of results are presented here. Some are about the heat equation and totally independant from any probabilistic context. For example, we compute the flows associated with the heat equation for three different potential and we study the structure of the Lie algebra of symmetries for those equations. Other results are presented: we show how it is possible to parametrize one factor affine models with Bernstein processes. We also give a necessary condition for the parametrization of -factor affine models with Berntein processes
Touya, Clément. "Étude de modèles dynamiques pour la transition vitreuse." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/1017/.
Full textThis thesis details the study of dynamical models in the framework of the glass transition. A full understanding of this phenomenon is still eluding modern physics. By means of toy model's, we thus study some properties which are typical of this transition. For example, when you come close to the transition, the relaxation dynamic of the system slows down dramatically. In order to study those systems, truly out of equilibrium, the main paradigm we use in this thesis is the disordered systems. Indeed, under some circumstances, an analogie exists between a model with disorder, and a real system which exhibit a true structural glass transition. If the interaction is short ranged, the relaxation time can be linked to the diffusion constant of the medium. If it vanishes, we have then a crossover between a diffusive and a sub-diffusive regime. This dynamical transition is then similar to the glass transition. In this spirit, we focused on the study of dipoles diffusing in a random electrical field. In this model, the disorder is given by the random electrical potential which gives birth to the field, and the most natural choice is then to take a Gaussian statistic for the potential. In an adiabatique limit, where the dipole adapt instantaneously to the local field, the model just reduces to a particle diffusing in a squared Gaussian effective potential. We show here, exactly in one dimension, and through a renormalization group analysis in higher dimension, that the diffusion constant vanishes for a critical non-zero temperature where the dynamic get frozen like in real glass. We show also that beyond this adiabatique approximation, the transition remain at the same critical temperature in one dimension
Rakotonasy, Solonjaka Hiarintsoa. "Modèle fractionnaire pour la sous-diffusion : version stochastique et edp." Phd thesis, Université d'Avignon, 2012. http://tel.archives-ouvertes.fr/tel-00839892.
Full textZerhouni, Abder Rahim. "Diffusion et feuilletages." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37601925f.
Full textBay, Xavier. "Estimation non paramétrique de projections en tomographie par émission de photons simples." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10096.
Full textHamadouche, Djamel. "Convergence de processus stochastiques à trajectoires hölderiennes." Lille 1, 1997. http://www.theses.fr/1997LIL10174.
Full textChevalier, Claire. "Physique Statistique et Géométrie." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00332499.
Full textHerrmann, Samuel. "Etude de processus de diffusion." Nancy 1, 2001. http://docnum.univ-lorraine.fr/public/SCD_T_2001_0026_HERRMANN.pdf.
Full textBooks on the topic "Diffusion (physique) – Processus stochastiques"
Prum, Bernard. Processus sur un réseau et mesures de Gibbs: Applications. Paris: Masson, 1986.
Find full textIkeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.
Find full textSergio, Albeverio, Blanchard Philippe, Streit Ludwig 1938-, and Bielefeld-Bochum Research Center Stochastics, eds. Stochastic processes, mathematics and physics: Proceedings of the 1st BiBos-Symposium, held in Bielefeld, West Germany, September 10-15, 1984. Berlin: Springer-Verlag, 1986.
Find full textKli͡at͡skin, Valeriĭ Isaakovich. Stochastic equations through the eye of the physicist: Basic concepts, exact results and asymptotic approximations. Amsterdam: Elsevier, 2005.
Find full textBook chapters on the topic "Diffusion (physique) – Processus stochastiques"
RIGNEAULT, Hervé, and Julien DUBOISSET. "Imagerie Raman cohérente." In Spectroscopies vibrationnelles, 273–88. Editions des archives contemporaines, 2020. http://dx.doi.org/10.17184/eac.4204.
Full text