Academic literature on the topic 'Digital aerial photography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital aerial photography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digital aerial photography"
Ruzgienė, Birutė. "REQUIREMENTS FOR AERIAL PHOTOGRAPHY." Geodesy and cartography 30, no. 3 (August 3, 2012): 75–79. http://dx.doi.org/10.3846/13921541.2004.9636646.
Full textPisetskaya, Olga, Yanina Isayeva, and Maksim Goutsaki. "Application of Unmanned Flying Vehicle for Obtaining Digital Orthofotomaps." Baltic Surveying 11 (November 20, 2019): 60–69. http://dx.doi.org/10.22616/j.balticsurveying.2019.018.
Full textKalynych, Ivan, Mariya Nychvyd, Ivan Prodanets, Nataliya Kablak, and Yaroslav Vash. "GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY." GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY 95,2022, no. 95 (June 28, 2022): 77–93. http://dx.doi.org/10.23939/istcgcap2022.95.077.
Full textChetverikov, Borys, Lyubov Babiy, Zoriana Kuzyk, Iryna Zayats, and Mykhailo Protsyk. "GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY." GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY 96,2022, no. 96 (December 2022): 14–23. http://dx.doi.org/10.23939/istcgcap2022.96.014.
Full textPiekielek, Nathan. "A semi-automated workflow for processing historic aerial photography." Abstracts of the ICA 1 (July 15, 2019): 1. http://dx.doi.org/10.5194/ica-abs-1-299-2019.
Full textLeckebusch, Jürg. "Aerial archaeology: a full digital workflow for aerial photography." Archaeological Prospection 12, no. 4 (2005): 235–44. http://dx.doi.org/10.1002/arp.260.
Full textTobak, Zalán, József Szatmári, and Boudewijn Van Leeuwen. "Small Format Aerial Photography." Journal of Environmental Geography 1, no. 3-4 (July 1, 2008): 21–26. http://dx.doi.org/10.14232/jengeo-2008-43861.
Full textHlotov, V., М. Fys, and О. Pashchetnyk. "GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY." GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY 92,2020, no. 92 (December 24, 2020): 45–54. http://dx.doi.org/10.23939/istcgcap2020.92.045.
Full textKazantsev, Ivan, Bimba-Tsyren Namsalov, and Elena Ovcharova. "A SKETCH OF A DIGITAL MAP OF THE VEGETATION COVER USING AERIAL PHOTOGRAPHY DATA." Interexpo GEO-Siberia 4, no. 1 (2019): 59–63. http://dx.doi.org/10.33764/2618-981x-2019-4-1-59-63.
Full textKin, Danylo, and Yurii Karpinskyi. "GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY." GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY 95,2022, no. 95 (June 28, 2022): 103–12. http://dx.doi.org/10.23939/istcgcap2022.95.103.
Full textDissertations / Theses on the topic "Digital aerial photography"
Millinor, William A. "Digital Vegetation Delineation on Scanned Orthorectified Aerial Photography of Petersburg National Battlefield." NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20001123-131211.
Full textI developed a new methodology to produce an orthorectified mosaic and a vegetation database of Petersburg National Battlefield using mostly digital methods. Both the mosaic and the database meet National Map Accuracy Standards and proved considerably faster than traditional aerial photograph interpretation methods. I classified vegetation polygons to the formation level using the Nature Conservancy?s National Vegetation Classification System. Urban areas were classified using Mitchell?s Classification Scheme for Urban Forest Mapping with Small-Scale Aerial Photographs. This method reduced the production time by 2/3, compared to traditional methods. It also reduced the chance of user error because re-tracing of the linework is not required.
My method started with scanning 75 aerial color IR photos, provided by Petersburg National Battlefield, at 600 dpi. Erdas Imagine was used to rectify the images using United States Geological Service (USGS) Digital Elevation Models (DEM) and black and white USGS Digital Orthophoto Quarter Quadrangles (DOQQ) as reference. The images were then mosaiced to create a seamless color infrared orthorectified basemap of the park. The vegetation polygons were drawn onscreen using ArcMap from Environmental Systems Research Institute, Inc. (ESRI) with the color, orthorectified mosaic as a background image. Stereo pairs of the aerial photos were referenced as needed for clarification of the vegetation. I used a minimum mapping unit (mmu) of 0.2 hectares, which exceeds guidelines defined by the United States Geological Survey ? National Park Service Vegetation Mapping Program. This methodology is easily learned quickly and has already been applied to several other studies.
The production of an orthorectified mosaic, created during the process, from the aerial photographs greatly increases the value of the photographs at little additional cost to the user. The orthorectified basemap can then be used as a backdrop for existing data layers or it can be used to create new GIS data layers. I used a minimum mapping unit (mmu) of 0.2 hectare, which exceeds guidelines defined by the United States Geological Survey-National Park Service Vegetation Mapping Program
Traditionally, vegetation polygons are delineated on acetate for each photograph. The linework on the acetates is then transferred to a basemap using a zoom transfer scope or other transfer instrument. The linework is traced again to digitize it for use in a GIS program. This process is time consuming, and the linework is drawn three times. The redundant tracing increases the chance of user error. My new methodology requires that polygons be delineated only once. I wanted to avoid using the zoom transfer scope and to avoid the redundant linework.
A total of 228 polygons were delineated over 20 separate vegetation and land cover classes with an overall thematic accuracy of 87.42% and a Kappa of .8545. Positional accuracy was very good with a RMSE of 1.62 meters in the x direction and 2.81 meters in the y direction. The Kappa and RMSE values compare favorably with accuracies obtained using traditional vegetation mapping methods.
Korpela, Ilkka. "Individual tree measurements by means of digital aerial photogrammetry." Helsinki : Finnish Forest Research Institute, Finnish Society of Forest Science, 2004. http://catalog.hathitrust.org/api/volumes/oclc/55872310.html.
Full textEdwards, Esther. "An investigation into the use of aerial digital photography for monitoring coastal sand dunes." Thesis, Bath Spa University, 2001. http://researchspace.bathspa.ac.uk/1442/.
Full textBaxter, Kieran Andrew. "Topography and flight : the creative application of aerial photography and digital visualisation for landscape heritage." Thesis, University of Dundee, 2017. https://discovery.dundee.ac.uk/en/studentTheses/e22373db-adee-4bb1-9fbe-43691816ce85.
Full textKoch, Frank Henry Jr. "A Comparison of Digital Vegetation Mapping and Image Orthorectification Methods Using Aerial Photography of Valley Forge National Historical Park." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010417-180334.
Full textIn recent years, mapping software utilizing scanned?or ?softcopy??aerial photographs has become widely available. Using scanned photos of Valley Forge (PA) National Historical Park, I explored some of the latest tools for image processing and computer-based vegetation mapping. My primary objective was to compare different approaches for their efficiency and accuracy. In keeping with the USGS-NPS Vegetation Mapping Program protocol, I classified the park?s vegetation according to The Nature Conservancy?s National Vegetation Classification System (NVCS).
Initially, I scanned forty-nine 1:6000 color-infrared air photos of the area at 600 dpi using an Epson desktop scanner. I orthorectified the images by two different methods. First, I did so on a single-image basis using ERDAS Imagine. In this approach, United States Geological Survey (USGS) Digital Ortho Quarter Quadrangles (DOQQ) and a 10-meter Digital Elevation Model (DEM) served as references for between seven and twelve ground control points per photo. After achieving a root mean square error (RMSE) of less than 1 meter for an image, I resampled it into an orthophoto. I then repeated the process using Imagine Orthobase. Via aerial triangulation, Orthobase generated an RMSE solution for the entire block of images, which I resampled into orthophotos using a batch process.
Positional accuracies were remarkably similar for image mosaics I created from the single-image as well as the Orthobase orthophotos. For both mosaics, planimetric x-coordinate accuracy met the U.S. National Map Accuracy Standard for Class 1 maps, while planimetric y-coordinate accuracy met the Class 2 standard. However, the Orthobase method is faster?reducing process time by 50%?and requires 20% (or less) of the ground control points necessary for the single-image method.
I delineated the park?s vegetation to the formation level of the NVCS. Using ESRI ArcMap, I digitized polygons of homogeneous areas observed from the orthophotos. This on-screen mapping approach was largely monoscopic, though I verified some areas using a scanning stereoscope and the original hard-copy photos. The minimum mapping unit (MMU) was 0.5 acres (ac), smaller than that recommended by the USGS-NPS protocol. Based on field data, thematic accuracy for this map met the National Map Accuracy Standard of 80%. Misestimation of the hydrologic period of certain polygons resulted in some classification errors, as did confusion between evergreen and deciduous vegetation.
In addition to orthophotos, Orthobase creates a stereo block viewable in ERDAS Stereo Analyst, a digital stereoscopic software package. Using Crystal Eyes? eyewear and a high-refresh-rate monitor, a user can observe imagery full screen, three-dimensionally. Features delineated on the images are stored in ESRI shapefile format. I created a preliminary vegetation map at the alliance level of the NVCS with this software. Thematic accuracy of this map will be known when assessment is completed this summer. Notably, the classification scheme has required revision to accommodate the anthropogenically altered landscape of Valley Forge.
Nevertheless, it is clear that Stereo Analyst offers advantages for vegetation and other types of mapping. Stereoscopic view and sharp zoom-in capabilities make photo interpretation straightforward. Because features are delineated directly into a GIS, Stereo Analyst cuts process time by 70% and avoids two steps that can introduce errors in conventional mapping methods (i.e., transfer to map base and digitizing). Perhaps most importantly, joint use of Orthobase and Stereo Analyst allows simultaneous orthophoto creation and GIS data collection; in contrast, the ArcMap approach requires finished orthophotos before features can be delineated. Ultimately, though, both monoscopic and stereoscopic methods have roles in vegetation mapping projects. The level of detail required for the project should determine which technique is most appropriate.
Pacurari, Doru I. "Evaluation of the use of remotely sensed images to speciate mixed Appalachian forests." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1550.
Full textTitle from document title page. Document formatted into pages; contains x, 128 p. : ill. (some col.), maps (some col.) Vita. Includes abstract. Includes bibliographical references (p. 116-121).
Noguez, Cristiane Teixeira. "Construção do sistema de informações geográficas da margem esquerda do canal do Rio Grande / SJN (SIG-MECR/SJN) com base em imagens digitais de pequeno formato." reponame:Repositório Institucional da FURG, 2005. http://repositorio.furg.br/handle/1/3649.
Full textSubmitted by Cristiane Silva (cristiane_gomides@hotmail.com) on 2013-03-12T13:17:19Z No. of bitstreams: 1 CTNoguez.pdf: 3523090 bytes, checksum: 9f6eb22b92ea6c2fdfbade3919c7ed04 (MD5)
Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2013-07-15T18:50:17Z (GMT) No. of bitstreams: 1 CTNoguez.pdf: 3523090 bytes, checksum: 9f6eb22b92ea6c2fdfbade3919c7ed04 (MD5)
Made available in DSpace on 2013-07-15T18:50:17Z (GMT). No. of bitstreams: 1 CTNoguez.pdf: 3523090 bytes, checksum: 9f6eb22b92ea6c2fdfbade3919c7ed04 (MD5) Previous issue date: 2005
Este estudo apresenta um mapeamento detalhado do uso do solo da margem esquerda do Canal do Rio Grande, no município de São José do Norte, realizado através da fotointerpretação de imagens digitais, 35 mm, no modo visível, adquiridas com o sensor aerotransportado ADAR 1000 e de verificações de campo. As imagens foram inseridas no programa MegaGIS, criando um Sistema de Informações Geográficas (SIGs), denominado SIG-MECRG/SJN. A alta resolução das fotografias aéreas (0,5m por pixel) permitiu a visualização e identificação dos diferentes alvos. Através do uso de produtos de sensoriamento remoto e do uso das tecnologias de geoprocessamento, é possível mapear e identificar as feições observadas. O uso das fotografias aéreas é adequado para o mapeamento de áreas urbanas, devido à sua alta resolução espacial. Além das informações digitais, foram obtidas informações sobre as residências da área através de entrevistas com os moradores. Para a elaboração do SIG, foram utilizados programas para georreferenciar, exportar e manipular as fotografias aéreas. O emprego destas fotografias foi satisfatório para o reconhecimento e identificação das feições estudadas. As principais feições mapeadas na área de estudo foram as residências, a linha de costa, a hidrografia, as marismas, as dunas e as modificações antrópicas. Todas as informações inseridas no SIG, podem ser consultadas de acordo com o interesse do pesquisador. Estas consultas podem ser disponibilizadas na forma de gráficos para a visualização dos dados.
This study presents a detailed mapping of the land uses along the left margin of the Canal do Rio Grande, municipality of São José do Norte. The mapping was conducted using (a) interpretation of digital photographs (35 mm) acquired by airborne sensor ADAR 1000 and (b) field surveys. A Geographical Information System (GIS), denominated SIG-MECRG/SJN, was created using the MegaGIS software. To build the GIS, it was necessary the application of geoprocessing techniques, and export and enhancement of digital photos. Additionally, data about the properties identified in the photos were obtained through interviews with local residents. The high resolution of the aerial photos (0.5 m per pixel) combined with geoprocessing techniques allowed the identification of the different targets in the urban area. The main targets identified in the area are: houses, coastline, water flows, salt marshes, dunes, and man-made changes in the landscape. The GIS allows searching of information according to specific needs from which data can be displayed in tabular or graphic formats.
Nilsson, Niklas. "Feature detection for geospatial referencing." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-159809.
Full textDå drönarindustrin växer så det knakar, har flygfoton blivit allt viktigare för en rad applikationer i vårt samhälle. Att flyga över ett svårnavigerat område med en drönare kan ge bättre översikt och är ofta snabbare, billigare och mer precist än skisser eller andra alternativa översiktsmetoder. Med denna ökade användning kommer också ett ökat behov av automatisk bildprocessering för att hjälpa till i analysen av dessa fotografier. Denna avhandling presenterar en metod för automatisk positionsbedömning av flygfoton, med hjälp av databaser med flygfoton och satellitfoton. Den presenterade metoden är baserad på inledande tester av existerande feature detection, feature description och feature matching algoritmer på ett något förenklat problem, där givna foton är väldigt grafiskt lika. Efter detta implementerades ytterligare modifikationer och förbättringar för att göra metoden mer robust även för bilder med en hög nivå av grafisk diskrepans, exempelvis skillnad i synvinkel, kamera- och linsparametrar, temporära objekt och vädereffekter. Den föreslagna metoden ger nöjaktiga resultat i geografiska regioner med en proportionellt stor mängd grafiska särdrag som enkelt kan särskiljas från varandra och där den grafiska diskrepansen inte är allt för stor. Särskilt goda resultat ses i bland annat städer och vissa typer av jordbruksområden, där metoden kan ge betydligt bättre resultat än metoder baserade på kända kameraparametrar och fotografens GPS-positionering, vilket har varit ett vanligt sätt att utföra denna typ av automatisk positionsbestämning tidigare. Dessutom är den presenterade metoden ofta enklare att applicera, då precisionen för diverse mätinstrument som annars måste användas när fotot tas inte spelar in alls i metodens beräkningar. Dessutom har metoden utökats för automatisk processering av videoströmmar. På grund av bristfälligt referensdata kan inga definitiva slutsatser dras angående metodens precision för detta användningsområde. Men det är ändå tydligt att beräkningstiden kan minskas drastiskt genom att använda faktumet att två påföljande ögonblicksbilder har ett stort grafiskt överlapp. Genom att använda en sorts extrapolering kan inverkan från grafiskt brus också minskas, brus som kan göra positionsbestämning omöjligt för en given ögonblicksbild.
Walstra, Jan. "Historical aerial photographs and digital photogrammetry for landslide assessment." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/2501.
Full textZagalikis, Georgios D. "Estimation of forest stand parameters using digital orthorectified aerial photographs." Thesis, University of Aberdeen, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274879.
Full textBooks on the topic "Digital aerial photography"
Aber, James S. Small-format aerial photography: Principles, techniques and geoscience applications. Amsterdam: Elsevier Science, 2010.
Find full textKorpela, Ilkka. Individual tree measurements by means of digital aerial photogrammetry. Helsinki: Finnish Society of Forest Science ; Finnish Forest Research Institute, 2004.
Find full textA, Gruen, Kuebler O. 1943-, and Agouris P. 1963-, eds. Automatic extraction of man-made objects from aerial and space images. Basel: Birkhäuser Verlag, 1995.
Find full textSandau, Rainer. Digital Airborne Camera: Introduction and Technology. Dordrecht: Springer Science+Business Media B.V., 2010.
Find full textMatsuyama, Takashi. SIGMA: A knowledge-based aerial image understanding system. New York: Plenum, 1990.
Find full text1978-, Westphal Ulrike, Hoffmann Felix 1929-, C/O's e. V, and C/O Berlin (Gallery), eds. Ungefähre Landschaft. München: Deutscher Kunstverlag, 2009.
Find full textNewcomer, J. BOREAS level-0 AOCI imagery: Digital counts in BIL format. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 2000.
Find full textBook chapters on the topic "Digital aerial photography"
Burger, B. "ADAR Digital Aerial Photography Applications In Precision Farming." In Proceedings of the Third International Conference on Precision Agriculture, 905. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1996.precisionagproc3.c108.
Full textJiang, Wencong, Yanling Li, Yong Liang, and Yanwei Zeng. "Research on Quality Index System of Digital Aerial Photography Results." In Computer and Computing Technologies in Agriculture IV, 381–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18336-2_47.
Full textWang, Xiaojun, Yanling Li, Yong Liang, and Yanwei Zeng. "Research on Quality Inspection Method of Digital Aerial Photography Results." In Computer and Computing Technologies in Agriculture IV, 392–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18336-2_48.
Full textZeng, Yanwei, Yong Liang, Wencong Jiang, and Xiaojun Wang. "Research on Automatic Inspection Methods of Flight Quality of Digital Aerial Photography Results." In Computer and Computing Technologies in Agriculture V, 176–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27275-2_19.
Full textLiang, Yong, Yanwei Zeng, Wencong Jiang, and Xiaojun Wang. "Research on Automatic Inspection Methods of Image Quality of Digital Aerial Photography Results." In Computer and Computing Technologies in Agriculture V, 320–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27275-2_37.
Full textIshiguro, Satoshi, Katsumasa Yamada, Takehisa Yamakita, Hiroya Yamano, Hiroyuki Oguma, and Tsuneo Matsunaga. "Classification of Seagrass Beds by Coupling Airborne LiDAR Bathymetry Data and Digital Aerial Photographs." In Aquatic Biodiversity Conservation and Ecosystem Services, 59–70. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0780-4_5.
Full textAber, James S., Irene Marzolff, Johannes B. Ries, and Susan E. W. Aber. "Digital Image Processing and Analysis." In Small-Format Aerial Photography and UAS Imagery, 191–221. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-812942-5.00011-2.
Full textHorning, Ned, Julie A. Robinson, Eleanor J. Sterling, Woody Turner, and Sacha Spector. "Marine and coastal environments." In Remote Sensing for Ecology and Conservation. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780199219940.003.0013.
Full textZelasco, José Francisco, Gaspar Porta, and José Luis Fernandez Ausinaga. "Geometric Quality in Geographic Information." In Encyclopedia of Database Technologies and Applications, 266–70. IGI Global, 2005. http://dx.doi.org/10.4018/978-1-59140-560-3.ch045.
Full textSkirvin, Susan, William Kepner, Stuart Marsh, Samuel Drake, John Maingi, Curtis Edmonds, Christopher Watts, and David Williams. "Assessing the Accuracy of Satellite-Derived Land-Cover Classification Using Historical Aerial Photography, Digital Orthophoto Quadrangles, and Airborne Video Data." In Remote Sensing and GIS Accuracy Assessment, 115–31. CRC Press, 2004. http://dx.doi.org/10.1201/9780203497586.ch9.
Full textConference papers on the topic "Digital aerial photography"
Onyett, Samuel. "Kite Aerial Photography and Unmanned Aerial Systems." In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). IEEE, 2022. http://dx.doi.org/10.1109/dasc55683.2022.9925791.
Full textYurchuk, Iryna, Vladyslav Kovdrya, and Lolita Bilyanska. "Segmentation of Digital Images of Aerial Photography." In 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). IEEE, 2019. http://dx.doi.org/10.1109/apuavd47061.2019.8943841.
Full textAnderson, John E., and Maurits Roos. "Using digital-scanned aerial photography for wetlands delineation." In Orlando '91, Orlando, FL, edited by Robert J. Curran, James A. Smith, and Ken Watson. SPIE, 1991. http://dx.doi.org/10.1117/12.45853.
Full textPrades, Ignacio J., Jorge Nunez, Fernando Perez, Vincenc Pala, and Roman Arbiol. "Aerial photography restoration using the maximum likelihood estimator (MLE) algorithm." In Spatial Information from Digital Photogrammetry and Computer Vision: ISPRS Commission III Symposium, edited by Heinrich Ebner, Christian Heipke, and Konrad Eder. SPIE, 1994. http://dx.doi.org/10.1117/12.182866.
Full textTang, Feifei, Zhimin Ruan, and Li Li. "Application of unmanned aerial vehicle oblique photography in 3D modeling of crag." In Tenth International Conference on Digital Image Processing (ICDIP 2018), edited by Xudong Jiang and Jenq-Neng Hwang. SPIE, 2018. http://dx.doi.org/10.1117/12.2503015.
Full textHowland, Matthew D., Brady Liss, Mohammad Najjar, and Thomas E. Levy. "GIS-based mapping of archaeological sites with low-altitude aerial photography and structure from Motion: A case study from Southern Jordan." In 2015 Digital Heritage. IEEE, 2015. http://dx.doi.org/10.1109/digitalheritage.2015.7413842.
Full textGrigoriev, Gleb, Vladimir Gulin, Alexei Nikitin, Nikita Sivoy, Eugene Bondarev, Marat Islamuratov, Oksana Zakharova, Igor Karpov, Evgenii Liubimov, and Vladislav Votsalevskiy. "Integrated Droneborne Geophysics Application as a Tool for Exploration Optimization. Case Studies." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206250-ms.
Full textChan, Y. T. A., L. Liu, W. Hou, and R. Tsui. "Photogrammetry- and LiDAR-based Multi-temporal Point Cloud Models and Digital Elevation Models for Landslide Investigation in Hong Kong - Feasibility and Challenges." In The HKIE Geotechnical Division 42nd Annual Seminar. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.133.13.
Full textГринько, А. Е., and К. В. Кирилова. "ON THE PROBLEM OF USING SOME NEW METHODS FOR DOCUMENTING ROCK ART." In Труды Сибирской Ассоциации исследователей первобытного искусства. Crossref, 2019. http://dx.doi.org/10.25681/iaras.2019.978-5-202-01433-8.101-105.
Full textMcNeill, Stephen, Kerry Barton, Phil Lyver, and David Pairman. "Semi-automated penguin counting from digital aerial photographs." In IGARSS 2011 - 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2011. http://dx.doi.org/10.1109/igarss.2011.6050185.
Full textReports on the topic "Digital aerial photography"
Bednarski, J. M., and G. C. Rogers. LiDAR and digital aerial photography of Saanich Peninsula, selected Gulf Islands, and coastal regions from Mill Bay to Ladysmith, southern Vancouver Island, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/291819.
Full textMarcot, Bruce, M. Jorgenson, Thomas Douglas, and Patricia Nelsen. Photographic aerial transects of Fort Wainwright, Alaska. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/45283.
Full text