Academic literature on the topic 'Digital laser'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital laser.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digital laser"
Guang Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, et al. "Laser Digital Cinema Projector." Journal of Display Technology 4, no. 3 (September 2008): 314–18. http://dx.doi.org/10.1109/jdt.2008.924163.
Full textShimura, Mikihiko, Koichi Imanaka, Hiroshi Sekii, Akira Fujimoto, and Takeshi Takagi. "Semiconductor laser digital scanner." Optical Engineering 29, no. 3 (1990): 230. http://dx.doi.org/10.1117/12.55582.
Full textIchioka, Y., T. Kobayashi, H. Kitagawa, and T. Suzuki. "Digital scanning laser microscope." Applied Optics 24, no. 5 (March 1, 1985): 691. http://dx.doi.org/10.1364/ao.24.000691.
Full textPiqué, Alberto, Heungsoo Kim, Ray Auyeung, Jiwen Wang, Andrew Birnbaum, and Scott Mathews. "Laser-Based Digital Microfabrication." NIP & Digital Fabrication Conference 25, no. 1 (January 1, 2009): 394–97. http://dx.doi.org/10.2352/issn.2169-4451.2009.25.1.art00108_1.
Full textLi, Qingfeng, David Grojo, Anne-Patricia Alloncle, Boris Chichkov, and Philippe Delaporte. "Digital laser micro- and nanoprinting." Nanophotonics 8, no. 1 (October 16, 2018): 27–44. http://dx.doi.org/10.1515/nanoph-2018-0103.
Full textHuang, Cing-Yi, Kuo-Chih Chang, and Shu-Chun Chu. "Experimental Investigation of Generating Laser Beams of on-Demand Lateral Field Distribution from Digital Lasers." Materials 12, no. 14 (July 10, 2019): 2226. http://dx.doi.org/10.3390/ma12142226.
Full textPlesch, A., U. Klingbeil, and J. Bille. "Digital laser scanning fundus camera." Applied Optics 26, no. 8 (April 15, 1987): 1480. http://dx.doi.org/10.1364/ao.26.001480.
Full textNgcobo, Sandile, Igor Litvin, Liesl Burger, and Andrew Forbes. "Demonstrating a Rewritable Digital Laser." Optics and Photonics News 24, no. 12 (December 1, 2013): 28. http://dx.doi.org/10.1364/opn.24.12.000028.
Full textLang, Marion, Rudolf Neuhaus, and Jürgen Stuhler. "Digital Revolution in Laser Control." Optik & Photonik 10, no. 1 (February 2015): 38–41. http://dx.doi.org/10.1002/opph.201500005.
Full textKowalik, John, John J. Rosinski, and Bradford R. Siepman. "Digital business telephones-project laser." Bell Labs Technical Journal 3, no. 1 (August 14, 2002): 122–33. http://dx.doi.org/10.1002/bltj.2097.
Full textDissertations / Theses on the topic "Digital laser"
Crossingham, Grant James. "A digital laser slopemeter." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481690.
Full textRanély-Vergé-Dépré, Claude-Alban. "Digital laser and Coherent Beam combination." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX131.
Full textCoherent Beam Combining (CBC) is an innovative architectural approach to designing efficient laser sources combining high average power and high peak power (kW/GW), while offering great flexibility in the spatial shaping of the resulting beam. Ytterbium (Yb)-doped fiber amplifiers offer excellent thermal management thanks to the fiber's high surface-to-volume ratio (facilitating cooling) and high efficiency made possible by the long interaction lengths accessible and the low quantum defect of the Yb dopant. Moreover, these fibers feature a gain spectral width that supports pulse durations of down to a few hundred femtoseconds. This makes it possible to amplify femtosecond pulse trains at high repetition rates. The two prototypes studied in this thesis use the combination of this technology with CBC architecture. The first is based on a composite pupil with 61 tiled beams, offering individual control of its channels and introducing the concept of digital laser. Its pulse duration is reduced by a non-linear "post-compression" technique, enabling it to retain its digital properties. The second prototype, with its superposition of 7 pupils, is being studied and developed for its greater theoretical efficiency
Mosayebi, Mahshad. "Digital Laser Speckle Image Correlation." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2131.
Full textHeath, Daniel. "Digital micromirror devices and femtosecond laser pulses for rapid laser micromachining." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/417275/.
Full textNewberry, Shawn. "Laser Speckle Patterns with Digital Image Correlation." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2885.
Full textAmer, Eynas. "Pulsed laser ablation studied using digital holography." Doctoral thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18194.
Full textGodkänd; 2009; 20091018 (eyname); DISPUTATION Ämnesområde: Experimentell mekanik/Experimental Mechanics Opponent: Reader in Laser Engineering Bill O’Neill, University of Cambridge, UK Ordförande: Professor Mikael Sjödahl, Luleå tekniska universitet Tid: Fredag den 20 november 2009, kl 10.00 Plats: E 231, Luleå tekniska universitet
Cronin, Christopher Joseph. "Digital frequency demodulation for a laser vibrometer." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-11102009-020344/.
Full textAmer, Mohamed Eynas. "Pulsed laser ablation studied using digital holography /." Luleå : Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/3315450.
Full textLarsson, Ola. "Digital Implementation of a Laser Doppler Perfusion Monitor." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7091.
Full textUnder 20 års tid har Perimed AB utvecklat och tillverkat LDPM- och LDPI-instrument som är baserade på en analog filterkonstruktion. De analoga komponenterna i konstruktionen är komplexa och icke-linjära med hänsyn till frekvens och de driver även med temperaturen. Funktionen hos konstruktionen beror också kraftigt av att de analoga komponenterna trimmas in under produktionen.
Det här examensarbetet syftar till att ta fram en alternativ design baserad kring en digital signal processor. Den digitala signalbehandlingsmetod som beskrivs baseras på väl förankrade laser-Doppler perfusionsteorier. Den implementerade signalbehandlingsalgoritmen beräknar perfusionen ur en samplad fotodetektorström, som har filtrerats till AC- och DC-komponenter med hjälp av ett analogt detektorkort. Algoritmen producerar en råperfusionssignal genom att beräkna en frekvensviktad summa av fotodetektorströmmens effektspektrum. Kompensation för detektorns brus och normalisering med ljusintensitet har också implementerats.
Den presenterade implementationen har verifierats mot ett exemplar av LDPM-enheten PF 5010 som har använts som referensinstrument vid alla mätningar. Mätningar in vitro har påvisat liknande mätresultat som referensinstrumentet för en referensvätska med hög perfusion och även för ett statiskt mätobjekt. Vidare har implementationen verifierats med mätningar in vivo på hud, vilket har påvisat nära nog identiska signalnivåer och gensvar på värmeprovokationer som referensinstrumentet.
Den demonstrerade uppfinningen förenklar tillverkningen av instrumenten eftersom antalet komponenter reduceras avsevärt och därmed antalet produktionstester. Användandet av en DSP reducerar dessutom instrumentets temperaturkänslighet eftersom den ersätter flera temperaturkänsliga komponenter.
For 20 years Perimed AB have been developing and manufacturing LDPM and LDPI instruments based on an analog filter construction. The analog components in the construction are complex and suffer from non-linear frequency dependency and temperature drifts. The functionality of the design is also heavily depending on analog components which need to be trimmed in the production.
In this thesis, an alternative design employing a digital signal processor is presented. The signal processing method used is based on well established laser Doppler perfusion theories. The implemented signal processing algorithm calculates the perfusion from a sampled photodetector current, pre-filtered into AC and DC components by an analog detector card. The algorithm produces a raw perfusion signal by calculating a frequency weighted sum of the power spectral density, PSD, of the photocurrent. Detector noise compensation and light intensity normalization of the signal has also been implemented.
The presented digital implementation has been verified using the PF 5010 LDPM unit as a reference. In vitro measurements have shown similar behaviour as the reference in a highly perfused reference fluid as well as for a static scatterer. Furthermore, the DSP implementation has been verified on in vivo measurements of skin, showing nearly identical signal levels and response to heat provocation as the reference.
The demonstrated invention improves the manufacturability of the instruments since it reduces the number of electronic components significantly and thus, the amount of manufacturing tests. The DSP also reduces the temperature sensitivity of the instrument since it replaces several analog components sensitive to temperature changes.
Erk, Patrick P. (Patrick Peter). "Digital signal processing techniques for laser-doppler anemometry." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/43026.
Full textBooks on the topic "Digital laser"
S, Dongare A., and Bhabha Atomic Research Centre, eds. Digital beam profiler for infrared lasers. Mumbai: Bhabha Atomic Research Centre, 2003.
Find full textBlutinger, Jonathan David. Digital Cuisine: Food Printing and Laser Cooking. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textHunter, David Mackenzie. Digital radiography by laser scanned readout of amorphous selenium. Ottawa: National Library of Canada, 1996.
Find full textMontes, Felix G. Digital data acquisition for laser radar for vibration analysis. Monterey, Calif: Naval Postgraduate School, 1998.
Find full textBowen, M. F. Ultimate ocean depth packaging for a digital ring laser gyroscope. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1998.
Find full textF, Marshall Gerald, ed. Handbook of optical and laser scanning. New York: Marcel Dekker, 2004.
Find full textGauthier, V. Application of PIDV to complex flows: Velocity field measurements in the front of a heavy gas cloud. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1988.
Find full textShi Weiming yan jiu shi. Mac ying yin da hang: Xia zai, bo fang, fen xiang, dui kao DVD, zhuan dang. Taibei Shi: Qi biao chu ban gu fen you xian gong si, 2008.
Find full textChambers, Mark L. Hewlett-Packard official recordable CD handbook. Foster City, CA: IDG Books Worldwide, 2000.
Find full textWei-Jei, Yang, Yamamoto Fujio, Mayinger F. 1931-, American Society of Mechanical Engineers. Fluids Engineering Division., and ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition (1995 : Hilton Head, S.C.), eds. Flow visualization and image processing of multiphase systems: Presented at the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, August 13-18, 1995, Hilton Head, South Carolina. New York: American Society of Mechanical Engineers, 1995.
Find full textBook chapters on the topic "Digital laser"
Rinkevichyus, B. S., O. A. Evtikhieva, and I. L. Raskovskaya. "Digital Refractogram Recording and Processing." In Laser Refractography, 135–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7397-9_7.
Full textPiqué, Alberto. "Laser Transfer Techniques for Digital Microfabrication." In Laser Precision Microfabrication, 259–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4_11.
Full textBreda, Alberto, Salvatore Micali, Angelo Territo, Mino Rizzo, Giulio Bevilacqua, Iacopo Meneghetti, Maria Chiara Sighinolfi, Bernardo Rocco, and Giampaolo Bianchi. "Confocal Laser Endomicroscopy." In Urologic Surgery in the Digital Era, 187–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63948-8_11.
Full textBrettel, Hans. "Pseudocolour Displays in Digital Image Processing." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 349–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_73.
Full textTooley, F. A. P. "Digital Logic Elements for Optical Computing." In Laser Science and Technology, 403–22. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-0378-8_25.
Full textSchlüter, P. "Positional Correction During Laser Cutting by Means of Digital Image Processing." In Laser in der Technik / Laser in Engineering, 234–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_40.
Full textHutzler, P. J. S., S. Berber, and W. Waidelich. "An Interactive System for Digital Optical Image Processing." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 218–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_43.
Full textHutzler, P. "Opto-Electronic Sensor Systems for Digital Image Processing." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 106–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_26.
Full textPedrini, G., Y. Zou, and H. J. Tiziani. "Speckle- and Digital Holographic Interferometry (A Comparison)." In Laser in Forschung und Technik / Laser in Research and Engineering, 485–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80263-8_104.
Full textLi, Xiaojie, Bao-zhen Ge, Dan Zhao, Qing-guo Tian, and K. David Young. "Auto-calibration of a Laser 3D Color Digitization System." In Digital Human Modeling, 691–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02809-0_73.
Full textConference papers on the topic "Digital laser"
Tani, Shuntaro. "Digital Twins for Laser Microprocessing Based on Large-Scale Experimental Data." In Laser Applications Conference, LM1B.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/lac.2024.lm1b.3.
Full textSementin, V. V., A. P. Pogoda, and A. S. Boreysho. "Filtering methods for reconstructed digital holograms." In 2024 International Conference Laser Optics (ICLO), 240. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624570.
Full textSoman, Pranav. "Addressing key challenges in multimaterial and multiscale digital projection stereolithography." In Laser 3D Manufacturing XII, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen, 11. SPIE, 2025. https://doi.org/10.1117/12.3040820.
Full textPetrov, V. M., D. V. Masygin, A. A. Sevryugin, E. V. Shalymov, E. K. Iurieva, D. V. Venediktov, and V. Yu Venediktov. "Holographic Interferometers for Optical Digital Medical Tomography." In 2024 International Conference Laser Optics (ICLO), 176. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624127.
Full textNumazawa, Keisuke, Kota Kumagai, and Yoshio Hayasaki. "Volumetric micro clouds drawn with femtosecond laser pulses." In Digital Holography and Three-Dimensional Imaging, W5B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w5b.4.
Full textDu, Qiu-shuang, Wan-cheng Liu, Yu-hai Li, Song Guan, and Yi-ning Yang. "A high dynamic range imaging method based on the digital micromirror device." In Laser Technology and Applications, edited by Pu Zhou, 48. SPIE, 2024. https://doi.org/10.1117/12.3047822.
Full textStevens, Rock, Josiah Dykstra, Wendy Knox Everette, and Michelle L. Mazurek. "How to Hack Compliance: Using Lessons Learned to Repeatably Audit Compliance Programs for Digital Security Concerns." In Learning from Authoritative Security Experiment Results. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/laser.2020.23003.
Full textTakeuchi, Eric B., Graham W. Flint, Robert Bergstedt, Paul J. Solone, Dicky Lee, and Peter F. Moulton. "Laser Digital Cinema." In Photonics West 2001 - Electronic Imaging, edited by Ming H. Wu. SPIE, 2001. http://dx.doi.org/10.1117/12.420785.
Full textSmeu, Emil, Niculae N. Puscas, and Ion M. Popescu. "Digital laser powermeter." In ROMOPTO '97: Fifth Conference on Optics, edited by Valentin I. Vlad and Dan C. Dumitras. SPIE, 1998. http://dx.doi.org/10.1117/12.312715.
Full textAptowicz, Kevin B., Ahmed M. Alsayed, Yilong L. Han, and Arjun G. Yodh. "Optical Artifacts in Digital Video Microscopy." In Laser Science. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ls.2006.lmh4.
Full textReports on the topic "Digital laser"
Shamey, Renzo, Traci A. M. Lamar, and Uikyung Jung. Digital Textile Printing with Laser Engraving: Surface Contour Modification and Color Properties. Ames (Iowa): Iowa State University. Library, January 2019. http://dx.doi.org/10.31274/itaa.9459.
Full textKomerath, N. M., O. D. Wong, and R. Mahalingam. Tunable Solid-State Laser and High Resolution Digital Cameras for Lagrangian Vortex Imaging. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391255.
Full textMiles, Richard B. Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381328.
Full textMiles, Richard B. AASERT: Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada383154.
Full textRandell. L51857 Evaluation of Digital Image Acquisition and Processing Technologies for Ground Movement Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2008. http://dx.doi.org/10.55274/r0011244.
Full textKubica, Stefan, Tobias Peuschke-Bischof, Belinda Müller, and Robin Avci. Fahrmanöver für Geradeausfahrt. Technische Hochschule Wildau, 2019. http://dx.doi.org/10.15771/1264.
Full textLeón, Carlos. Digital Operational Resilience Act (DORA). FNA, July 2023. http://dx.doi.org/10.69701/deff9232.
Full textBaral, Aniruddha, Jeffery Roesler, and Junryu Fu. Early-age Properties of High-volume Fly Ash Concrete Mixes for Pavement: Volume 2. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-031.
Full textMorneault, K., S. Rengasami, M. Kalla, and G. Sidebottom. Integrated Services Digital Network (ISDN) Q.921-User Adaptation Layer. RFC Editor, January 2006. http://dx.doi.org/10.17487/rfc4233.
Full textGreen, Malcolm. Diamond-Shaped Semiconductor Ring Lasers for Analog to Digital Photonic Converters. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada421293.
Full text