Academic literature on the topic 'Digital modulation classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital modulation classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digital modulation classification"
Faek, Fatima K. "Digital Modulation Classification Using Wavelet Transform and Artificial Neural Network." Journal of Zankoy Sulaimani - Part A 13, no. 1 (2009): 59–70. http://dx.doi.org/10.17656/jzs.10211.
Full textMobasseri, Bijan G. "Digital modulation classification using constellation shape." Signal Processing 80, no. 2 (2000): 251–77. http://dx.doi.org/10.1016/s0165-1684(99)00127-9.
Full textSwami, A., and B. M. Sadler. "Hierarchical digital modulation classification using cumulants." IEEE Transactions on Communications 48, no. 3 (2000): 416–29. http://dx.doi.org/10.1109/26.837045.
Full textGhauri, Sajjad Ahmed. "KNN BASED CLASSIFICATION OF DIGITAL MODULATED SIGNALS." IIUM Engineering Journal 17, no. 2 (2016): 71–82. http://dx.doi.org/10.31436/iiumej.v17i2.641.
Full textAli, Afan, Fan Yangyu, and Shu Liu. "Automatic modulation classification of digital modulation signals with stacked autoencoders." Digital Signal Processing 71 (December 2017): 108–16. http://dx.doi.org/10.1016/j.dsp.2017.09.005.
Full textZhang, Min, Zhongwei Yu, Hai Wang, Hongbo Qin, Wei Zhao, and Yan Liu. "Automatic Digital Modulation Classification Based on Curriculum Learning." Applied Sciences 9, no. 10 (2019): 2171. http://dx.doi.org/10.3390/app9102171.
Full textDobre, Octavia A., Ali Abdi, Yeheskel Bar-Ness, and Wei Su. "Cyclostationarity-Based Modulation Classification of Linear Digital Modulations in Flat Fading Channels." Wireless Personal Communications 54, no. 4 (2009): 699–717. http://dx.doi.org/10.1007/s11277-009-9776-2.
Full textGhauri, Sajjad Ahmed, Ijaz Mansoor Qureshi, Tanveer Ahmed Cheema, and Aqdas Naveed Malik. "A Novel Modulation Classification Approach Using Gabor Filter Network." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/643671.
Full textPrakasam, P., and M. Madheswaran. "Digital Modulation Identification Model Using Wavelet Transform and Statistical Parameters." Journal of Computer Systems, Networks, and Communications 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/175236.
Full textWong, M. L. Dennis, and Asoke K. Nandi. "Semi-blind algorithms for automatic classification of digital modulation schemes." Digital Signal Processing 18, no. 2 (2008): 209–27. http://dx.doi.org/10.1016/j.dsp.2007.02.007.
Full textDissertations / Theses on the topic "Digital modulation classification"
Wong, Dennis Mou Ling. "Automatic classification of digital communication modulation schemes." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400128.
Full textHatzichristos, George. "Classification of digital modulation types in multipath environments." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA390810.
Full textYoung, Andrew F. "Classification of digital modulation types in multipath environments." Thesis, Monterey California. Naval Postgraduate School, 2008.
As the digital communications industry continues to grow and evolve, the applications of this discipline continue to grow as well. This growth, in turn, has spawned an increasing need to seek automated methods of classifying digital modulation types. This research is a revision of previous work, using the latest mathematical software including MATLAB version 7 and Simulink ®. The program considers the classification of nine different modulation types. Specifically, the classification scheme can differentiate between 2, 4, and 8 PSK, 256-QAM from other types of M-QAM signals, and also M-FSK signals from PSK and QAM signals in various types of propagation channels, including multipath fading and a variety of signal-to-noise levels. This method successfully identifies these modulation types without the benefit of a priori information. Higher-order statistical parameters are selected as class features and are tested in a classifier for their ability to identify the above modulation types. This study considers the effects due to realistic multipath propagation channels and additive white Gaussian noise. Using these features, and considering all fading conditions, it was determined that the classifier was correct for a randomly sent signal under randomly high or low SNR levels (low: 0dB to 8dB; high: 50dB to 100dB) over 83.9% of the time.
Erdem, Erem. "Digital Modulation Recognition." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611281/index.pdf.
Full textZhu, Zhechen. "Automatic classification of digital communication signal modulations." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9246.
Full textGeisinger, Nathan P. "Classification of digital modulation schemes using linear and nonlinear classifiers." Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Mar/10Mar%5FGeisinger.pdf.
Full textThesis Advisor(s): Fargues, Monique P. ; Cristi, Roberto ; Robertson, Ralph C. "March 2010." Description based on title screen as viewed on .April 27, 2010. Author(s) subject terms: Blind Modulation Classification, Cumulants, Principal Component Analysis, Linear Discriminant Analysis, Kernel-based functions. Includes bibliographical references (p. 211-212). Also available in print.
Puengnim, Anchalee. "Classification de modulations linéaires et non-linéaires à l'aide de méthodes bayésiennes." Toulouse, INPT, 2008. http://ethesis.inp-toulouse.fr/archive/00000676/.
Full textThis thesis studies classification of digital linear and nonlinear modulations using Bayesian methods. Modulation recognition consists of identifying, at the receiver, the type of modulation signals used by the transmitter. It is important in many communication scenarios, for example, to secure transmissions by detecting unauthorized users, or to determine which transmitter interferes the others. The received signal is generally affected by a number of impairments. We propose several classification methods that can mitigate the effects related to imperfections in transmission channels. More specifically, we study three techniques to estimate the posterior probabilities of the received signals conditionally to each modulation
Sinyanskiy, Alexander. "Automatická klasifikace digitálních modulací pomocí neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317005.
Full textFontes, Aluisio Igor R?go. "Classifica??o Autom?tica de Modula??o Digital com uso de Correntropia para Ambientes de R?dio Cognitivo." Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15452.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Modern wireless systems employ adaptive techniques to provide high throughput while observing desired coverage, Quality of Service (QoS) and capacity. An alternative to further enhance data rate is to apply cognitive radio concepts, where a system is able to exploit unused spectrum on existing licensed bands by sensing the spectrum and opportunistically access unused portions. Techniques like Automatic Modulation Classification (AMC) could help or be vital for such scenarios. Usually, AMC implementations rely on some form of signal pre-processing, which may introduce a high computational cost or make assumptions about the received signal which may not hold (e.g. Gaussianity of noise). This work proposes a new method to perform AMC which uses a similarity measure from the Information Theoretic Learning (ITL) framework, known as correntropy coefficient. It is capable of extracting similarity measurements over a pair of random processes using higher order statistics, yielding in better similarity estimations than by using e.g. correlation coefficient. Experiments carried out by means of computer simulation show that the technique proposed in this paper presents a high rate success in classification of digital modulation, even in the presence of additive white gaussian noise (AWGN)
Os modernos sistemas de comunica??o sem fio empregam, frequentemente, t?cnicas adaptativas para proporcionar uma alta taxa de transmiss?o, enquanto asseguram qualidade de servi?o (QoS) e abrang?ncia de cobertura. Estudos recentes t?m mostrado que esses sistemas podem se tornar ainda mais eficientes com a incorpora??o de t?cnicas de intelig?ncia artificial e de conceitos de r?dio definido por software. Os sistemas que seguem essa linha, conhecidos como Sistemas de R?dio Cognitivo, podem idealmente explorar de forma din?mica e oportun?stica por??es do espectro de frequ?ncias n?o utilizadas, conhecidas como buracos espectrais, com o objetivo de prover altas taxas de transmiss?o de dados com elevada confiabilidade e disponibilidade de servi?o. A Classifica??o Autom?tica de Modula??o (AMC) seria uma habilidade muito ?til nesses sistemas. Normalmente, as t?cnicas de AMC utilizam alguma forma de pr?-processamento do sinal que pode introduzir um alto custo computacional ou necessitar de suposi??es fortes, e at? mesmo imprecisas, sobre o sinal recebido. Este trabalho prop?e o uso direto de uma medida de similaridade, baseada na Teoria da Informa??o, conhecida como coeficiente de correntropia, para extrair informa??es estat?sticas de ordem elevada do sinal, com o objetivo de reconhecer automaticamente o formato de modula??es digitais. Experimentos realizados por meio de simula??o computacional demonstram que a t?cnica proposta neste trabalho apresenta uma alta taxa de sucesso na classifica??o de modula??es digitais, mesmo na presen?a de ru?do aditivo gaussiano branco (AWGN)
Richter, Raik. "Ein Beitrag zur Modellierung und Realisierung der direkten digitalen Frequenzsynthese." Doctoral thesis, [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=963112023.
Full textBooks on the topic "Digital modulation classification"
Classification of Digital Modulation Types in Multipath Environments. Storming Media, 2001.
A Hierarchical Approach to the Classification of Digital Modulation Types in Multipath Environments. Storming Media, 2001.
Book chapters on the topic "Digital modulation classification"
Zong, Wenbo, Edmund M.-K. Lai, and Chai Quek. "Digital Modulation Classification using Fuzzy Neural Networks." In Chance Discoveries in Real World Decision Making. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-34353-0_7.
Full textConference papers on the topic "Digital modulation classification"
Li, Yuanxuan, Fanggang Wang, and Gang Zhu. "Hybrid digital modulation classification." In 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC 2012). IEEE, 2012. http://dx.doi.org/10.1109/iwcmc.2012.6314340.
Full textZhang, Wei, and Hu Yang. "Automatic Digital Modulation Classification Algorithms." In 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.345918.
Full textMarinovic, Nenad M., Douglas J. Nelson, Leon Cohen, and Srinivasan Umesh. "Classification of digital modulation types." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Franklin T. Luk. SPIE, 1995. http://dx.doi.org/10.1117/12.211392.
Full textDeng, Hongyang, Milos Doroslovacki, Hussam Mustafa, Jinghao Xu, and Sunggy Koo. "Automatic digital modulation classification using instantaneous features." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745605.
Full textHongyang Deng, Doroslovacki, Mustafa, Jinghao Xu, and Sunggy Koo. "Automatic digital modulation classification using instantaneous features." In IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1004866.
Full textTabatabaei, Talieh S., Sridhar Krishnan, and Alagan Anpalagan. "SVM-based classification of digital modulation signals." In 2010 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2010. http://dx.doi.org/10.1109/icsmc.2010.5642249.
Full textSun, Gangcan, Pingping Li, and Zhongyong Wang. "Digital modulation classification using constellation shape reconstruction." In International Conference on Communication Technology. WIT Press, 2014. http://dx.doi.org/10.2495/icct130651.
Full textAn, Qi, Wei Xia, Zi-shu He, and Hui-yong Li. "Algorithm for modulation classification of PSK signals." In 2014 International Conference on Digital Signal Processing (DSP). IEEE, 2014. http://dx.doi.org/10.1109/icdsp.2014.6900741.
Full textZhechen Zhu, Muhammad Waqar Aslam, and Asoke Kumar Nandi. "Augmented Genetic Programming for automatic digital modulation classification." In 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2010. http://dx.doi.org/10.1109/mlsp.2010.5588920.
Full textGouldieff, Vincent, Jacques Palicot, and Steredenn Daumont. "Blind automatic modulation classification in multipath fading channels." In 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, 2017. http://dx.doi.org/10.1109/icdsp.2017.8096116.
Full text