Academic literature on the topic 'Digital pulse processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital pulse processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digital pulse processing"
Veiga, A., and C. M. Grunfeld. "Digital pulse processing in Mössbauer spectroscopy." Hyperfine Interactions 226, no. 1-3 (December 10, 2013): 693–700. http://dx.doi.org/10.1007/s10751-013-0983-6.
Full textFazzi, A., and V. Varoli. "A digital spectrometer for 'optimum' pulse processing." IEEE Transactions on Nuclear Science 45, no. 3 (June 1998): 843–48. http://dx.doi.org/10.1109/23.682648.
Full textJordanov, Valentin T. "Exponential signal synthesis in digital pulse processing." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 670 (April 2012): 18–24. http://dx.doi.org/10.1016/j.nima.2011.12.042.
Full textBargholtz, Chr, E. Fumero, L. Mårtensson, and S. Wachtmeister. "Digital pulse-shape processing for CdTe detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, no. 1-2 (September 2001): 290–92. http://dx.doi.org/10.1016/s0168-9002(01)01021-x.
Full textNakhostin, M., K. Hitomi, K. Ishii, and Y. Kikuchi. "Digital pulse processing for planar TlBr detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 615, no. 2 (April 2010): 242–44. http://dx.doi.org/10.1016/j.nima.2010.01.076.
Full textDi Fulvio, A., T. H. Shin, M. C. Hamel, and S. A. Pozzi. "Digital pulse processing for NaI(Tl) detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 806 (January 2016): 169–74. http://dx.doi.org/10.1016/j.nima.2015.09.080.
Full textSong, Wen-Gang, Li-Jun Zhang, Jing Zhang, and Guan-Ying Wang. "Research on digital pulse processing techniques for silicon drift detector." Acta Physica Sinica 71, no. 1 (2022): 012903. http://dx.doi.org/10.7498/aps.71.20211062.
Full textYani, Kalfika, Fiky Y. Suratman, and Koredianto Usman. "Design and Implementation Pulse Compression for S-Band Surveillance Radar." Journal of Measurements, Electronics, Communications, and Systems 7, no. 1 (December 30, 2020): 20. http://dx.doi.org/10.25124/jmecs.v7i1.2631.
Full textО.О., Луковенкова,, Мищенко, М.A., Сенкевич, Ю.И., and Щербина, А.О. "Modern methods of processing and analysis of geophysical pulse signals." Вестник КРАУНЦ. Физико-математические науки, no. 4 (December 22, 2022): 120–36. http://dx.doi.org/10.26117/2079-6641-2022-41-4-120-136.
Full textWarburton, W. K., M. Momayezi, B. Hubbard-Nelson, and W. Skulski. "Digital pulse processing: new possibilities in nuclear spectroscopy." Applied Radiation and Isotopes 53, no. 4-5 (November 2000): 913–20. http://dx.doi.org/10.1016/s0969-8043(00)00247-5.
Full textDissertations / Theses on the topic "Digital pulse processing"
McCormick, Martin (Martin Steven). "Digital pulse processing." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78468.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 71-74).
This thesis develops an exact approach for processing pulse signals from an integrate-and-fire system directly in the time-domain. Processing is deterministic and built from simple asynchronous finite-state machines that can perform general piecewise-linear operations. The pulses can then be converted back into an analog or fixed-point digital representation through a filter-based reconstruction. Integrate-and-fire is shown to be equivalent to the first-order sigma-delta modulation used in oversampled noise-shaping converters. The encoder circuits are well known and have simple construction using both current and next-generation technologies. Processing in the pulse-domain provides many benefits including: lower area and power consumption, error tolerance, signal serialization and simple conversion for mixed-signal applications. To study these systems, discrete-event simulation software and an FPGA hardware platform are developed. Many applications of pulse-processing are explored including filtering and signal processing, solving differential equations, optimization, the minsum / Viterbi algorithm, and the decoding of low-density parity-check codes (LDPC). These applications often match the performance of ideal continuous-time analog systems but only require simple digital hardware. Keywords: time-encoding, spike processing, neuromorphic engineering, bit-stream, delta-sigma, sigma-delta converters, binary-valued continuous-time, relaxation-oscillators.
by Martin McCormick.
S.M.
Jastaniah, Saddig Darwish. "Development of a capture-gated fast neutron detector with pulse shape discrimination using digital pulse processing." Thesis, University of Surrey, 2003. http://epubs.surrey.ac.uk/2792/.
Full textEkstam, Ljusegren Hannes, and Hannes Jonsson. "Parallelizing Digital Signal Processing for GPU." Thesis, Linköpings universitet, Programvara och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167189.
Full textCollaer, Marcia Lee. "IMAGE DATA COMPRESSION: DIFFERENTIAL PULSE CODE MODULATION OF TOMOGRAPHIC PROJECTIONS." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/291412.
Full textBousselham, Abdel Kader. "FPGA based data acquistion and digital pulse processing for PET and SPECT." Doctoral thesis, Stockholm University, Department of Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6618.
Full textThe most important aspects of nuclear medicine imaging systems such as Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) are the spatial resolution and the sensitivity (detector efficiency in combination with the geometric efficiency). Considerable efforts have been spent during the last two decades in improving the resolution and the efficiency by developing new detectors. Our proposed improvement technique is focused on the readout and electronics. Instead of using traditional pulse height analysis techniques we propose using free running digital sampling by replacing the analog readout and acquisition electronics with fully digital programmable systems.
This thesis describes a fully digital data acquisition system for KS/SU SPECT, new algorithms for high resolution timing for PET, and modular FPGA based decentralized data acquisition system with optimal timing and energy. The necessary signal processing algorithms for energy assessment and high resolution timing are developed and evaluated. The implementation of the algorithms in field programmable gate arrays (FPGAs) and digital signal processors (DSP) is also covered. Finally, modular decentralized digital data acquisition systems based on FPGAs and Ethernet are described.
Bousselham, Abdelkader. "FPGA based data acquistion and digital pulse processing for PET and SPECT /." Stockholm : Department of Physics, Stockholm University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6618.
Full textJacobs, Deon. "Digital pulse width modulation for Class-D audio amplifiers." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/1574.
Full textDigital audio data storage mediums have long been used within the consumer market. Today, because of the advancement of processor clock speeds and increased MOSFET switching capabilities, digital audio data formats can be directly amplified using power electronic inverters. These amplifiers known as Class-D have an advantage over there analogue counterparts because of their high efficiency. This thesis deals with the signal processing algorithms necessary to convert the digital audio data obtained from the source to a digital pulse width modulated signal which controls a full bridge inverter for audio amplification. These algorithms address difficulties experienced in the past which prevented high fidelity digital pulse width modulators to be implemented. The signal processing algorithms are divided into modular blocks, each of which are defined in theory, designed and simulated in Matlab® and then implemented within VHDL firmware. These firmware blocks are then used to realize a Class-D audio amplifier.
Lauer, Martin. "Digital signal processing for segmented HPGe detectors preprocessing algorithms and pulse shape analysis /." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972595910.
Full textGoldberg, Jason M. "Signal processing for high resolution pulse width modulation based digital-to-analogue conversion." Thesis, King's College London (University of London), 1992. https://kclpure.kcl.ac.uk/portal/en/theses/signal-processing-for-high-resolution-pulse-width-modulation-based-digitaltoanalogue-conversion(0eb09aa0-1c54-48c3-844f-25aaa98908bf).html.
Full textProdaniuc, Cristian. "Advanced Signal Processing for Pulse-Amplitude Modulation Optical Transmission Systems." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/117315.
Full text[CAT] Actualment, s'utilitzen sistemes òptics no coherents en xarxes òptiques de curt abast ( < 80 km), com són les xarxes d'àmbit metropolità. La implementació més comuna que podem trobar en l'estat de l'art es correspon amb sistemes emplenant multiplexació per divisió en longitud d'ona (WDM, wavelength division multiplexing) de quatre longituds d'ona (¿) proporcionant un règim binari de 100 Gbps (4¿×25 Gbps). En els últims anys, els sistemes de transmissió òptica no-coherents han evolucionat des de 100 Gbps cap a 400 Gbps (100 Gbps/¿). Atès que el mercat de sistemes de curt abast compren un gran volum de dispositius òptics instal·lats, el cost unitari és molt important i ha de ser el més baix possible. L'objectiu d'aquesta tesi és analitzar aspectes del processament de senyal en general i, específicament, investigar noves tècniques de processament digital de senyal (DSP, digital signal processing) que puguen ser utilitzades en sistemes de transmissió òptica no-coherent que utilitzen la modulació per amplitud d'impulsos (PAM, pulse-amplitude modulation). Per tal que una tècnica DSP es considere interessant per a una xarxa òptica WDM no-coherent, aquesta ha de mitigar efectivament almenys una de les tres principals limitacions que afecten aquests sistemes: limitacions d'ample de banda, limitacions per dispersió cromàtica (CD), i el soroll. En aquesta tesi s'examinen una sèrie d'algoritmes, el seu rendiment s'analitza per simulació i experimentalment en laboratori: - Feed-forward equalizer (FFE): aquest és l'esquema d'equalització més comú i s'utilitza bàsicament en les transmissions òptiques no coherents d'alt règim binari. Pot compensar grans quantitats de limitacions d'ample de banda. - Estimació de la seqüència de probabilitat màxima (MLSE): el MLSE és un detector òptim i, per tant, proporciona el millor rendiment quan es tracta de limitacions d'ample de banda i de CD. - Conformació geomètrica de la constel·lació: en esquemes de modulació òptica d'intensitat multinivell es pot ajustar la distància entre els nivells d'amplitud (de manera que ja no són equidistants) per augmentar la tolerància del senyal al soroll. - Conformació probabilística: una tècnica dissenyada específicament per als esquemes de modulació multinivell; ajusta la probabilitat de cada nivell d'amplitud de manera que augmenta la tolerància al soroll òptic. - Senyalització de resposta parcial (PRS, partial signaling response): és un enfocament basat en DSP on la interferència entre símbols (ISI, inter-symbol interference) controlada s'introdueix intencionalment de manera que el senyal resultant requereix menys ample de banda. La tècnica PRS es pot adaptar per combatre els efectes del CD. - Pre-èmfasi digital (DPE, digital pre-emphasis): aquesta tècnica consisteix a aplicar la inversió de la funció de transferència del sistema a la senyal en el transmissor de manera que es redueix l'impacte de les limitacions d'ample de banda en la senyal en el receptor. - Modulació amb codificació Trellis (TCM, Trellis-coded modulation): esquema de modulació que combina els elements de correcció d'errors avançats (FEC, forward error correction) amb tècniques de partionament de conjunts i modulació multidimensional per generar un senyal més resistent al soroll. - Modulació multidimensional per partició en conjuntes: molt similar a TCM però sense elements FEC. Té guanys menors que TCM en termes de tolerància al soroll, però no és tan sensible a l'ISI. Mitjançant l'ús d'aquestes tècniques, aquesta tesi demostra que és possible aconseguir una transmissió òptica amb un règim binari de 100 Gbps/¿ utilitzant components de baix cost. Esta tesi també demostra règims binaris de més de 200 Gbps, el que indica que la tecnologia no-coherent amb modulació PAM és una solució viable i eficient en cost per a una nova generació de sistemes transceptors òptics WDM funcionant a 800 Gbps (4¿×200 G
[EN] Non-coherent optical transmission systems are currently employed in short-reach optical networks (reach shorter than 80 km), like metro networks. The most common implementation in the state-of-the-art is the four wavelength (¿) 100 Gbps (4¿×25 Gbps) wavelength division multiplexing (WDM) transceiver. In recent years non-coherent optical transmissions are evolving from 100 Gbps to 400 Gbps (4¿×100 Gbps). Since in the short-reach market the volume of optical devices being deployed is very large, the cost-per-unit of the devices is very important, and it should be as low as possible. The goal of this thesis is to investigate some general signal processing aspects and, specifically, digital signal processing (DSP) techniques required in non-coherent pulse-amplitude modulation (PAM) optical transmission, and also to investigate novel algorithms which could be applied to this application scenario. In order for a DSP technique to be considered an interesting solution for non-coherent WDM optical networks it has to effectively mitigate at least one of the three main impairments affecting such systems: bandwidth limitations, chromatic dispersion (CD) and noise (in optical or electrical domain). A series of algorithms are proposed and examined in this thesis, and their performance is analyzed by simulation and also experimentally in the laboratory: - Feed-forward equalization (FFE): this is the most common equalizer and it is basically employed in every high-speed non-coherent optical transmission. It can compensate high bandwidth limitations. - Maximum likelihood sequence estimation (MLSE): the MLSE is the optimum detector and thus provides the best performance when it comes to dealing with CD and bandwidth limitations. - Geometrical constellation shaping: in multilevel optical intensity modulation schemes the distance between amplitude levels can be adjusted (such that they are no longer equidistant) in order to increase the signal's tolerance to noise. - Probabilistic shaping: another technique designed specifically for multilevel modulation schemes; it adjusts the probability of each amplitude level such that the tolerance to optical noise is increased. - Partial response signaling (PRS): this is a DSP-based approach where a controlled inter-symbol interference (ISI) is intentionally introduced in such a way that the resulting signal requires less bandwidth. PRS can be customized to also mitigate CD impairment, effectively increasing transmission distances up to three times. - Digital pre-emphasis (DPE): this technique consists in applying the inverse of the transfer function of the system to the signal at the transmitter side which reduces the impact of bandwidth limitations on the signal at the receiver side. - Trellis-coded modulation (TCM): a modulation scheme that combines forward error correction (FEC) elements with set-partitioning techniques and multidimensional modulation to generate a signal that is more resistant to noise. - Multidimensional set-partitioned modulation: very similar with TCM but without any FEC elements. It has lower gains than TCM in terms of noise tolerance but is not so sensitive to ISI. By using the techniques enumerated above, this thesis demonstrates that is possible to achieve 100 Gbps/¿ optical transmission bitrate employing cost-effective components. Even more, bitrates higher than 200 Gbps are also demonstrated, indicating that non-coherent PAM is a viable cost-effective solution for next-generation 800 Gbps (4¿×200 Gbps) WDM transceivers.
Prodaniuc, C. (2019). Advanced Signal Processing for Pulse-Amplitude Modulation Optical Transmission Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117315
TESIS
Books on the topic "Digital pulse processing"
Steffen, Andreas. Digital pulse compression using multirate filter banks. Konstanz: Hartung-Gorre Verlag, 1991.
Find full textJohn, Hines, Somps Chris, and United States. National Aeronautics and Space Administration., eds. Digital signal processing based biotelemetry receivers: Final report, NASA Ames University Consortium NCC2-5173. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textSignal Recovery and Synthesis Topical Meeting (5th 1995 Salt Lake City, Utah). Signal recovery and synthesis: Summaries of the papers presented at the topical meeting, Signal Recovery and Synthesis : March 14-15, 1995, Salt Lake City, Utah. Washington, DC: Optical Society of America, 1995.
Find full textAmerica, Optical Society of, ed. Signal recovery and synthesis: Summaries of the papers presented at the topical meeting ... March 14-15, 1995, Salt Lake City, Utah. Washington, DC: The Society, 1995.
Find full textDigital signal processing based biotelemetry receivers: Final report, NASA Ames University Consortium NCC2-5173. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textWright, A. G. Electronics for PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0014.
Full textHoran, Stephen. Introduction to PCM Telemetering Systems, Third Edition. Taylor & Francis Group, 2017.
Find full textIntroduction to PCM Telemetering Systems, Third Edition. Taylor & Francis Group, 2017.
Find full textBook chapters on the topic "Digital pulse processing"
Kaluarachchi, Eraj D., and Z. Ghassemlooy. "Digital Pulse Interval Modulation: Spectral Behaviour." In Digital Signal Processing for Communication Systems, 65–72. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6119-4_8.
Full textMott, R. B., and J. J. Friel. "Improving EDS Performance with Digital Pulse Processing." In X-Ray Spectrometry in Electron Beam Instruments, 127–57. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1825-9_9.
Full textKabe, Takahiro, Hiroyuki Torikai, and Toshimichi Saito. "Synchronization Via Multiplex Spike-Trains in Digital Pulse Coupled Networks." In Neural Information Processing, 1141–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893295_126.
Full textZhao, Yang. "A FIR Digital Filter for Pulse Signal Processing." In Lecture Notes in Electrical Engineering, 1244–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3648-5_161.
Full textTorres-Huitzil, César. "A Bit-Stream Pulse-Based Digital Neuron Model for Neural Networks." In Neural Information Processing, 1150–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893295_127.
Full textŚwisulski, D., E. Pawłowski, and M. Dorozhovets. "Digital Processing of Frequency–Pulse Signal in Measurement System." In Lecture Notes in Electrical Engineering, 319–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63949-9_20.
Full textAbeysekera, Saman S. "An Alternative Multi Stage Sigma-Delta Modulator Circuit Suitable for Pulse Stuffing Synchronizers." In Digital Signal Processing for Communication Systems, 55–64. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6119-4_7.
Full textSuedomi, Yasuhiro, Hakaru Tamukoh, Michio Tanaka, Kenji Matsuzaka, and Takashi Morie. "Parameterized Digital Hardware Design of Pulse-Coupled Phase Oscillator Model toward Spike-Based Computing." In Neural Information Processing, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42051-1_3.
Full textBondarev, Vladimir. "Vector-Matrix Models of Pulse Neuron for Digital Signal Processing." In Advances in Neural Networks – ISNN 2016, 647–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40663-3_74.
Full textIjichi, Hirofumi, and Hiroyuki Torikai. "Theoretical Analysis of Various Synchronizations in Pulse-Coupled Digital Spiking Neurons." In Neural Information Processing. Theory and Algorithms, 107–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17537-4_14.
Full textConference papers on the topic "Digital pulse processing"
POLLITT, A. J., J. A. DARE, A. G. SMITH, and I. TSEKHANOVICH. "DIGITAL PULSE PROCESSING FOR STEFF." In Seminar on Fission. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322744_0023.
Full textAnju, P., A. A. Bazil Raj, and Chandra Shekhar. "Pulse Doppler Processing - A Novel Digital Technique." In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2020. http://dx.doi.org/10.1109/iciccs48265.2020.9120950.
Full textMeller, Michal, and Lukasz Cwikowski. "A scalable computing platform for digital pulse compression and digital beamforming." In 2015 Signal Processing Symposium (SPSympo). IEEE, 2015. http://dx.doi.org/10.1109/sps.2015.7168279.
Full textDi, Yu-ming, Zhan-liang Li, Guo-ming Fang, Feng Han, Xiao-lin Qiu, Peng Xu, and Yuelei Wu. "Analysis for Digital Pulse Waveform Based on Cd (Zn) Te Detector." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75052.
Full textRibas, R. V., A. Deppman, C. Krug, G. S. Zahn, J. L. Rios, N. Added, and V. S. Timoteo. "Digital Pulse Processing: A New Paradigm For Nuclear Instrumentation." In XXXII BRAZILIAN WORKSHOP ON NUCLEAR PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3448013.
Full textDewey, E., B. Fallin, A. Hawari, and S. Saxena. "An FPGA-Based Framework for Digital Nuclear Pulse Processing." In Tranactions - 2019 Winter Meeting. AMNS, 2019. http://dx.doi.org/10.13182/t31119.
Full textMoline, Y., M. Thevenin, G. Corre, and M. Paindavoine. "A novel digital pulse processing architecture for nuclear instrumentation." In 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA). IEEE, 2015. http://dx.doi.org/10.1109/animma.2015.7465559.
Full textFernandez, Arnaud, Lu Chao, and Jacques W. D. Chi. "Dispersion-managed ring laser using SOA and dispersion-compensating fibre for pulse reshaping and clock recovery." In Digital Signal Processing (CSNDSP). IEEE, 2008. http://dx.doi.org/10.1109/csndsp.2008.4610763.
Full textLiu, Chao, Feng Xi, Shengyao Chen, and Zhong Liu. "A pulse-Doppler processing scheme for quadrature compressive sampling radar." In 2014 International Conference on Digital Signal Processing (DSP). IEEE, 2014. http://dx.doi.org/10.1109/icdsp.2014.6900750.
Full textDuan, Huawei, and Guangxue Chen. "Digital halftoning using a modified pulse-coupled neural network." In 3rd International Conference on Digital Image Processing, edited by Ting Zhang. SPIE, 2011. http://dx.doi.org/10.1117/12.896559.
Full textReports on the topic "Digital pulse processing"
Doerry, Armin. Digital Signal Processing of Radar Pulse Echoes. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1663260.
Full textMiles, Richard B. Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381328.
Full textMiles, Richard B. AASERT: Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada383154.
Full textBlundell, S. Micro-terrain and canopy feature extraction by breakline and differencing analysis of gridded elevation models : identifying terrain model discontinuities with application to off-road mobility modeling. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40185.
Full text