To see the other types of publications on this topic, follow the link: Digital systems.

Journal articles on the topic 'Digital systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Digital systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Grebeniak, Andrii, Eugene Miyushkovych, and Yaroslav Paramud. "Digital Interfaces in Cyber-Physical Systems." Advances in Cyber-Physical Systems 2, no. 1 (March 28, 2017): 6–10. http://dx.doi.org/10.23939/acps2017.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Opolonin, O. D. "Increasing informativity of digital radiographic systems." Functional Materials 20, no. 4 (December 25, 2013): 528–33. http://dx.doi.org/10.15407/fm20.04.528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Vance S. "Digital Systems Analysis." Policy Futures in Education 7, no. 3 (January 2009): 330–39. http://dx.doi.org/10.2304/pfie.2009.7.3.330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bartram, J. "Digital Communication Systems." IEEE Journal of Oceanic Engineering 12, no. 3 (July 1987): 536–37. http://dx.doi.org/10.1109/joe.1987.1145280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Taylor, P. M. "Digital Control Systems." Electronics and Power 32, no. 1 (1986): 77. http://dx.doi.org/10.1049/ep.1986.0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Madisetti, V. K. "Reengineering digital systems." IEEE Design & Test of Computers 16, no. 2 (April 1999): 15–16. http://dx.doi.org/10.1109/mdt.1999.765199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Neto, F. "DIGITAL PHOTOGRAMMETRIC SYSTEMS." Photogrammetric Record 14, no. 79 (August 26, 2006): 130–32. http://dx.doi.org/10.1111/j.1477-9730.1992.tb00213.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berkhout, P., and L. Eggermont. "Digital audio systems." IEEE ASSP Magazine 2, no. 4 (October 1985): 45–67. http://dx.doi.org/10.1109/massp.1985.1163755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chang, Wei-Der, Ching-Lung Chi, Shun-Peng Shih, and Bo-Hong Ye Ye. "Parameter Estimation Algorithms for Volterra Digital Systems." International Journal of Future Computer and Communication 6, no. 3 (September 2017): 115–18. http://dx.doi.org/10.18178/ijfcc.2017.6.3.501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Samarukha, Victor, Tatyana Krasnova, and Alexander Dulesov. "Integrating Digital Production Systems." Bulletin of Baikal State University 30, no. 2 (June 11, 2020): 309–17. http://dx.doi.org/10.17150/2500-2759.2020.30(2).309-317.

Full text
Abstract:
Digitalization processes are now closely linked to the integration of economic actors. To a greater extent, production systems are interested in integration processes, as in modern conditions advanced production technologies rely on modern digital platforms. At present, production industries in the regions of the Russian Federation are developing unevenly, on the basis of digital technologies. The article discusses the process of multiple integration, defines it and highlights its structural elements. In order to compare countries in terms of the level of their digital development, they were classified according to the value of the international index of their digital economy and society. As a result, Russia is part of the last group. Consequently, the Russian Federation faced serious challenges in improving its digital status, especially in the field of production. On the basis of statistical data, the article describes the digital profile of the regions of the Russian Federation. A typology of integration processes of production systems based on digital technologies was developed. The results of the study show that within the wide variety of integration processes, the most important are those that occur on the basis of digital technologies.
APA, Harvard, Vancouver, ISO, and other styles
11

Flensburg, Sofie, and Signe Sophus Lai. "Comparing Digital Communication Systems." Nordicom Review 41, no. 2 (October 24, 2020): 127–45. http://dx.doi.org/10.2478/nor-2020-0019.

Full text
Abstract:
AbstractThis article offers a research tool for comparative studies of digital communication systems. It brings together the fields of infrastructure studies, Internet governance, and political economy of the Internet with the tradition of systemic media analysis and argues that existing frameworks are inadequate for capturing regulatory and power structures in a complex digital environment. In the article, we develop a framework for conceptualising and mapping the components of digital communication systems – the DCS framework – and operationalise it for standardised measurements by outlining twelve key indicators that can be analysed using empirical data from a number of existing databases. The framework provides a basis for measuring and comparing digital communication systems across national or regional contexts, and thereby developing new typologies for how to understand structural differences and similarities.
APA, Harvard, Vancouver, ISO, and other styles
12

Prasad, V. B. "Fault tolerant digital systems." IEEE Potentials 8, no. 1 (February 1989): 17–21. http://dx.doi.org/10.1109/45.31576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Taylor, P. M. "Industrial Digital Control Systems." IEE Review 35, no. 4 (1989): 146. http://dx.doi.org/10.1049/ir:19890067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Prime, H. A. "Industrial Digital Control Systems." Electronics and Power 33, no. 1 (1987): 72. http://dx.doi.org/10.1049/ep.1987.0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sweeny, Robert W. "Complex Digital Visual Systems." Studies in Art Education 54, no. 3 (April 2013): 216–31. http://dx.doi.org/10.1080/00393541.2013.11518895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Brand, M. J. D. "INTEGRATED DIGITAL INFORMATION SYSTEMS." Photogrammetric Record 12, no. 71 (August 26, 2006): 629–36. http://dx.doi.org/10.1111/j.1477-9730.1988.tb00611.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cox, Chris. "Industrial digital control systems." Microprocessors and Microsystems 11, no. 6 (July 1987): 350. http://dx.doi.org/10.1016/0141-9331(87)90518-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Joshua, Wemegah. "A Review of Various Data Security Techniques in Wireless Communication Systems." Advances in Multidisciplinary and scientific Research Journal Publication 10 (November 30, 2022): 15–24. http://dx.doi.org/10.22624/aims/digital/v10n4p3.

Full text
Abstract:
Sensitive data is constantly being transmitted particularly over wireless communication systems due to how convenient this wireless communication systems are. However, these communication systems are generally weak in terms of privacy protection and security as a whole. This is because anyone within the perimeter of a wireless network can attempt hacking into the network without physically connecting to it. This paper will focus on the two most common data security techniques in wireless communication systems – steganography and cryptography. Steganography is the practice of hiding information in another message or physical item such that its presence cannot be detected by human examination. Cryptography on the other hand is the science of encrypting information in a way that unintended recipients cannot interpret and then decrypting the said message back into plaintext. Keywords: Cryptography, Data Encryption, Data Decryption, Steganography, Wireless Communication
APA, Harvard, Vancouver, ISO, and other styles
19

Lim, Y. "A digital filter bank for digital audio systems." IEEE Transactions on Circuits and Systems 33, no. 8 (August 1986): 848–49. http://dx.doi.org/10.1109/tcs.1986.1085988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Qian, Michael D. Myers, and David Sundaram. "Digital Natives und Digital Immigrants." WIRTSCHAFTSINFORMATIK 55, no. 6 (November 12, 2013): 409–20. http://dx.doi.org/10.1007/s11576-013-0390-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Beuke, F., M. Vorderer, S. Junker, and S. Schröck. "Digitale Lösungsansätze für Montagesysteme von morgen*/Digital approaches for future assembly systems." wt Werkstattstechnik online 106, no. 09 (2016): 577–82. http://dx.doi.org/10.37544/1436-4980-2016-09-3.

Full text
Abstract:
Die Digitalisierung ist gleichermaßen Chance und Herausforderung für die moderne Produktion. Vor allem in der industriellen Montage erlauben internetbasierte Technologien und Dienste die Entwicklung hochgradig wandlungsfähiger sowie einfach bedienbarer Systeme. Der Einsatz solcher Lösungen kann zu monetären und zeitlichen Einsparungen bei Engineering, Aufbau und Inbetriebnahme führen. Dieser Fachbeitrag stellt zwei Lösungsansätze zur Steigerung der Wandlungsfähigkeit von Montageanlagen mit der Anwendung von Informationstechnologien (IT) vor.   The increasing digitalization is both opportunity and challenge for modern production. Especially in industrial assembly, internet-based technologies and services permit the realization of highly convertible and easy-to-use systems. The application of such solutions leads to cost and time savings in engineering, construction and ramp-up. This paper presents two approaches which support the adaptability of assembly systems by heavy use of digitization technologies.
APA, Harvard, Vancouver, ISO, and other styles
22

May, Marvin Carl, Andreas Kuhnle, and Gisela Lanza. "Digitale Produktion und intelligente Steuerung/Digital Production and Intelligent Production Control – Integrating digital and real-world production for adaptive and automated control." wt Werkstattstechnik online 110, no. 04 (2020): 255–60. http://dx.doi.org/10.37544/1436-4980-2020-04-89.

Full text
Abstract:
Im Rahmen der stufenweisen Umsetzung von Industrie 4.0 erreicht die Vernetzung und Digitalisierung die gesamte Produktion. Den physischen Produktionsprozess nicht nur cyber-physisch zu begleiten, sondern durch eine virtuelle, digitale Kopie zu erfassen und zu optimieren, stellt ein enormes Potenzial für die Produktionssystemplanung und -steuerung dar. Zudem erlauben digitale Modelle die Anwendung intelligenter Produktionssteuerungsverfahren und leisten damit einen Beitrag zur Verbreitung optimierender adaptiver Systeme.   In the wake of implementing Industrie 4.0 both integration and digitalization affect the entire production. Physical production systems offer enormous potential for production planning and control through virtual, digital copies and their optimization, well beyond purely cyber-physical production system extensions. Furthermore, digital models enable the application of intelligent production control and hence contribute to the dissemination of adaptively optimizing systems.
APA, Harvard, Vancouver, ISO, and other styles
23

Bauernhansl, T., S. Hartleif, and T. Felix. "Der Digitale Schatten*/The Digital Shadow." wt Werkstattstechnik online 108, no. 03 (2018): 132–36. http://dx.doi.org/10.37544/1436-4980-2018-03-28.

Full text
Abstract:
Eine effiziente Informationsversorgung ist aufgrund der in Technik und Organisation komplexer werdenden Anforderungen an soziotechnische Informationssysteme eine Herausforderung. Das hier vorgestellte Konzept des Digitalen Schattens basiert auf Anforderungen an eine effiziente Informationsversorgung und den sich daraus ergebenden Anforderungen an Subsysteme. Der Digitale Schatten soll eine durchgängige, bedarfsgerechte Informationsversorgung aller, in einem Wertschöpfungssystem agierenden Akteure gewährleisten.   An efficient supply of information is a challenge due to the increasing complexity of technical and organizational requirements for socio-technical information systems. The presented concept of the Digital Shadow is based on requirements for an efficient supply of information and the resulting requirements for subsystems. The Digital Shadow is intended to ensure a consistent and needs-based supply of information to all actors in a value adding system.
APA, Harvard, Vancouver, ISO, and other styles
24

Markandey, Vishal, and Robert J. Gove. "Digital Display Systems Based on the Digital Micromirror Device." SMPTE Journal 104, no. 10 (October 1995): 680–85. http://dx.doi.org/10.5594/j17666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Roads, Curtis. "Integrated Media Systems Digital Dyaxis: A Digital Audio Workstation." Computer Music Journal 13, no. 3 (1989): 107. http://dx.doi.org/10.2307/3680029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Revenko, Lilia S., and Nikolay S. Revenko. "Digital Divide and Digital Inequality in Global Food Systems." Vestnik RUDN. International Relations 22, no. 2 (July 3, 2022): 372–84. http://dx.doi.org/10.22363/2313-0660-2022-22-2-372-384.

Full text
Abstract:
The article explores the impact of the digital divide and digital inequality on the transformation processes in the world’s food sector through the lens of a new paradigm developed in preparation of the September 2021 UN Food Systems Summit. The purpose of the study is to identify the main causes of the deepening digital inequality in the food sector and ways to overcome it. The authors’ methodology of interdisciplinary comprehensive analysis of socio-economic processes makes it possible to identify the most disruptive points that inhibit food provision to the global population in the context of digitalization. It is argued that the digital inequality in various food systems is based on the multi-speed nature of digitalization processes in individual countries and among groups of economic entities, and this creates new competitive landscape and, consequently, a new ratio of market advantages and risks. It is concluded that the digital inequality in the global food systems has implication beyond the market profoundly affecting social outcomes. It exacerbates the food security problem in terms of economic affordability of food due to a decrease or loss of income of the rural population, who lose their jobs in the digitalization context, and also generates new risks of functioning in digital ecosystems. This situation makes it difficult to achieve the 2030 Sustainable Development Goals (SDG), namely SDG-2 and related goals. However, the impact of government regulation of the food sector on overcoming digital inequality remains ambiguous.
APA, Harvard, Vancouver, ISO, and other styles
27

S, Duraisekar, and Palaniappan M. "Content Management Systems and Digital Preservation for Digital Era." Journal of Information Technology Review 10, no. 2 (May 1, 2019): 59. http://dx.doi.org/10.6025/jitr/2019/10/2/59-63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hashimoto, Yoshitaka, and Seiichiro Iwase. "Digital Television (5) Structures of Digital Television Sub-Systems." Journal of the Institute of Television Engineers of Japan 39, no. 5 (1985): 457–64. http://dx.doi.org/10.3169/itej1978.39.457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rabadi, Ghaith, Resit Unal, Teddy Cotter, Rafael Landaeta, Charles Daniels, Andres Sousa Poza, Charles Keating, et al. "Towards Digital Engineering -- The Advent of Digital Systems Engineering." International Journal of System of Systems Engineering 10, no. 3 (2020): 1. http://dx.doi.org/10.1504/ijsse.2020.10031364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Jingwei, Adrian Gheorghe, Holly Handley, Pilar Pazos, Ariel Pinto, Samuel Kovacic, Andrew Collins, et al. "Towards digital engineering: the advent of digital systems engineering." International Journal of System of Systems Engineering 10, no. 3 (2020): 234. http://dx.doi.org/10.1504/ijsse.2020.109737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kroger, H., and U. Ghoshal. "Can superconductive digital systems compete with semiconductor systems?" IEEE Transactions on Applied Superconductivity 3, no. 1 (March 1993): 2307–14. http://dx.doi.org/10.1109/77.233543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bochkarev, O. I., P. N. Bilenko, V. G. Beltsov, and E. A. Asanova. "Digital platform of production systems." Management and Business Administration, no. 1 (April 2021): 104–15. http://dx.doi.org/10.33983/2075-1826-2021-1-104-115.

Full text
Abstract:
The Russian manufacturing companies are faced with the task of a technological breakthrough and bringing high-tech competitive products to world markets. The results of the study demonstrated the urgent need for enterprises to develop production systems using digital services combined into platforms. The article proposes an approach to the construction and development of production systems based on the use of both world experience and knowledge, and new digital services and systems of tools, developed at domestic enterprises. The sequence of targeted steps to implement digital transformation is highlighted.
APA, Harvard, Vancouver, ISO, and other styles
33

Ping-Yi, Hung, Lu Hsin-Yi, Fan Shih-Kang, and Lu Yen-Wen. "Mechatronic Systems in Digital Microfluidics." International Journal of Automation and Smart Technology 4, no. 4 (December 1, 2014): 216–21. http://dx.doi.org/10.5875/ausmt.v4i4.841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sokolov, Yury A., and Sergey A. Gusev. "Industrial systems with digital twin." Metalloobrabotka, no. 5-6 (2020): 53–67. http://dx.doi.org/10.25960/mo.2020.5-6.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Clark, Tony, Vinay Kulkarni, Jon Whittle, and Ruth Breu. "Engineering Digital Twin-Enabled Systems." IEEE Software 39, no. 2 (March 2022): 16–19. http://dx.doi.org/10.1109/ms.2021.3136325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

KOLESNIK, A. P. "SOCIAL SYSTEMS IN DIGITAL ECONOMY." Business Strategies, no. 1 (February 7, 2018): 03–11. http://dx.doi.org/10.17747/2311-7184-2018-1-03-11.

Full text
Abstract:
The Author considers a concept of digital economy as a highlighted and separated part of knowledge economy and investigates possible economic and worldview reasons for such separation. He sketches a concept of the existing social coverage systems (pension, medical and social insurance) in the context of the digital economy and outlines associated risks.
APA, Harvard, Vancouver, ISO, and other styles
37

Raghupathi, Wullianallur, and Amjad Umar. "Integrated Digital Health Systems Design." International Journal of Information Technologies and Systems Approach 2, no. 2 (July 2009): 15–33. http://dx.doi.org/10.4018/jitsa.2009070102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gumey, K. N., and M. J. Wright. "Digital Nets and Intelligent Systems." Journal of Intelligent Systems 2, no. 1-4 (January 1992): 1–10. http://dx.doi.org/10.1515/jisys.1992.2.1-4.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Takala, Jarmo, Shuvra S. Bhattacharyya, and Gang Qu. "Embedded Digital Signal Processing Systems." EURASIP Journal on Embedded Systems 2007 (2007): 1. http://dx.doi.org/10.1155/2007/27517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kyffin, R. K. "Book Review: Digital Communication Systems." International Journal of Electrical Engineering & Education 25, no. 2 (April 1988): 162. http://dx.doi.org/10.1177/002072098802500218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wilson, Raymond A. "Book Reviews: Digital Control Systems:." International Journal of Electrical Engineering & Education 34, no. 2 (April 1997): 184–86. http://dx.doi.org/10.1177/002072099703400222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jagadish, H. V., and T. Kailath. "Obtaining schedules for digital systems." IEEE Transactions on Signal Processing 39, no. 10 (1991): 2296–316. http://dx.doi.org/10.1109/78.91185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Takala, Jarmo, ShuvraS Bhattacharyya, and Gang Qu. "Embedded Digital Signal Processing Systems." EURASIP Journal on Embedded Systems 2007, no. 1 (2007): 027517. http://dx.doi.org/10.1186/1687-3963-2007-027517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Younis, M., C. Fischer, and W. Wiesbeck. "Digital beamforming in sar systems." IEEE Transactions on Geoscience and Remote Sensing 41, no. 7 (July 2003): 1735–39. http://dx.doi.org/10.1109/tgrs.2003.815662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ashenden, P. J. "Modeling digital systems using VHDL." IEEE Potentials 17, no. 2 (1998): 27–30. http://dx.doi.org/10.1109/45.666643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kleeman, Lindsay, and Antonio Cantoni. "Metastable Behavior in Digital Systems." IEEE Design & Test of Computers 4, no. 6 (1987): 4–19. http://dx.doi.org/10.1109/mdt.1987.295189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kaminska, B., and B. Courtois. "Mixed Analog and Digital Systems." IEEE Design & Test of Computers 13, no. 2 (1996): 8. http://dx.doi.org/10.1109/mdt.1996.500195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Stojanovski, T., L. Kocarev, and U. Parlitz. "Digital coding via chaotic systems." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44, no. 6 (June 1997): 562–65. http://dx.doi.org/10.1109/81.586032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Aqel, Musbah, A. I. Sheikh Ahmad, and P. K. Mahanti. "Simulation of Digital Control Systems." Systems Analysis Modelling Simulation 42, no. 10 (January 2002): 1419–28. http://dx.doi.org/10.1080/713745638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ruzgienė, Birutė. "COMPARISON BETWEEN DIGITAL PHOTOGRAMMETRIC SYSTEMS." Geodesy and cartography 33, no. 3 (August 3, 2012): 75–79. http://dx.doi.org/10.3846/13921541.2007.9636723.

Full text
Abstract:
The usage of Digital Photogrammetric Systems leads to increasing the mapping capabilities and efficiency through a full automation or in some cases half automation of mapping procedures. The digital image processing has possibility to improve the photogrammetric mapping implementation concerning the functionality and performance results relation. The goal of research is to investigate the functionality, flexibility and efficiency of two Digital Photogrammetric Mapping Systems for 3D surface modelling from aerial photographs. The experimental photogrammetric measurements have been carried out using DDPS software (Photogrammetric Package for Digital Aerial Photographs) as well as DPW (Digital Photogrammetric Workstation) LISA FOTO. The results of comparison between these two photogrammetric software show capabilities and possibilities for getting best results in digital photogrammetric processing. The analysis demonstrates that DDPS does not fulfil fully a typical workflow in digital photogrammetric mapping. However, the digital surface modelling is more efficient in time‐consuming. There is no doubt that DPW LISA FOTO together with image processing module LISA BASIC have more priorities, potentials and leads to wide applications. Despite this fact, DPW work is more complicated than DDPS in such aspects as stereo model creation, interpretation capabilities etc. The best digital photogrammetric mapping work flow could be achieved when integrating these two systems for getting a more efficient and highest productivity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography