Academic literature on the topic 'Digital terrain model. eng'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital terrain model. eng.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digital terrain model. eng"
Perko, Roland, Hannes Raggam, and Peter M. Roth. "Mapping with Pléiades—End-to-End Workflow." Remote Sensing 11, no. 17 (September 1, 2019): 2052. http://dx.doi.org/10.3390/rs11172052.
Full textHu, Pengbo, Jingming Hou, Zaixing Zhi, Bingyao Li, and Kaihua Guo. "An Improved Method Constructing 3D River Channel for Flood Modeling." Water 11, no. 3 (February 26, 2019): 403. http://dx.doi.org/10.3390/w11030403.
Full textGościewski, Dariusz, and Małgorzata Gerus-Gościewska. "Adjusting the Regular Network of Squares Resolution to the Digital Terrain Model Surface Shape." ISPRS International Journal of Geo-Information 9, no. 12 (December 20, 2020): 761. http://dx.doi.org/10.3390/ijgi9120761.
Full textWabiński, Jakub, and Marta Kuźma. "The visualization of a mountain using 3D printing." Bulletin of the Military University of Technology 66, no. 3 (September 30, 2017): 45–61. http://dx.doi.org/10.5604/01.3001.0010.5390.
Full textCho, Seong-Jun, Eun-Seok Bang, and Il-Mo Kang. "Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph." Economic and Environmental Geology 48, no. 3 (June 28, 2015): 205–12. http://dx.doi.org/10.9719/eeg.2015.48.3.205.
Full textZharova, N. E., A. V. Bekenov, and Aleksandr Chibunichev. "Automatic generation of a digital terrain model from «Resurs-P» stereo «fortuitous» image pair." Geodesy and Cartography 928, no. 10 (November 20, 2017): 50–57. http://dx.doi.org/10.22389/0016-7126-2017-928-10-50-57.
Full textRiegler, G., S. D. Hennig, and M. Weber. "WORLDDEM – A NOVEL GLOBAL FOUNDATION LAYER." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3/W2 (March 10, 2015): 183–87. http://dx.doi.org/10.5194/isprsarchives-xl-3-w2-183-2015.
Full textZardashti, R., and M. Bagherian. "A new model for optimal TF/TA flight path design problem." Aeronautical Journal 113, no. 1143 (May 2009): 301–8. http://dx.doi.org/10.1017/s0001924000002979.
Full textBeregovoi, D. V., and M. G. Mustafin. "Automated method of а topographic plan creation based on survey from a drone." Geodesy and Cartography 939, no. 9 (October 20, 2018): 30–36. http://dx.doi.org/10.22389/0016-7126-2018-939-9-30-36.
Full textTyagur, N., and M. Hollaus. "DIGITAL TERRAIN MODELS FROM MOBILE LASER SCANNING DATA IN MORAVIAN KARST." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 9, 2016): 387–94. http://dx.doi.org/10.5194/isprs-archives-xli-b3-387-2016.
Full textDissertations / Theses on the topic "Digital terrain model. eng"
Berveglieri, Adilson. "Classificação fuzzy de vertentes por krigagem e TPS com agregação de regiões via diagrama de Voronoi /." Presidente Prudente : [s.n.], 2011. http://hdl.handle.net/11449/88156.
Full textBanca: João Fernando Custodio da Silva
Banca: Ricardo Luís Barbosa
Resumo: As vertentes, como superf cies inclinadas, consistem em express~oes da Geomorfologia moldadas por fatores naturais (end ogenos e ex ogenos) e pelo pr oprio homem. Suas formas determinam o uxo ou o ac umulo de agua e representam caracter sticas fundamentais para a preven c~ao e resolu c~ao de problemas associados ao relevo, tais como utiliza c~ao do solo, constru c~ao civil entre outros. A classi ca c~ao da vertente em c^oncava, convexa ou retil - nea permite a identi ca c~ao de areas conforme sua declividade. Assim, por meio de uma grade retangular regular, base do modelo digital de terreno, gera-se uma malha interpolada por fun c~oes estimadoras: thin-plate spline, que possui caracter sticas de suaviza c~ao e krigagem, que al em da suavidade tamb em considera a depend^encia espacial. Logo ap os, a classi ca c~ao e feita, obedecendo a infer^encia fuzzy baseada em fun c~oes de pertin^encia que de nem classes a partir do c alculo da inclina c~ao e da concavidade ou convexidade do terreno. Entretanto, o resultado dessa classi ca c~ao est a atrelado a resolu c~ao da malha, n~ao permitindo fazer qualquer corre c~ao pontual. Pois, pequenas areas de pouca signi c^ancia podem ser formadas, necessitando elimin a-las. Nesse sentido, para que o resultado seja ajustado, aplica-se o diagrama de Voronoi, caracterizado por sua rela c~ao de abrang^encia e proximidade, como ferramenta para agregar regi~oes anteriormente classi cadas de modo a permitir um ajuste local e tornar o resultado mais condizente com a area em estudo, quando comparada a mapas geomorfol ogicos correspondentes
Abstract: Slopes, such as inclined surfaces, consist in geomorphological expressions shaped by natural factors (endogenous and exogenous) and also by man himself. Their shapes determine the ow or accumulation of water and represent fundamental characteristics for the prevention and resolution of problems associated with relief, as land use, buildings, and others. Classi- cating slopes in concave, convex or straight allows to identi cate areas based on declivity. Thus, by regular rectangular grid which represents a digital terrain model, it generates a interpolated mesh by estimator functions: thin-plate spline, which has characteristics of smoothing, and kriging, which besides smoothing also considers spatial dependence. After that, the classi cation is realized according to fuzzy inference based on membership functions that de ne classes from the calculation of the slope and concavity or convexity of the ground. However, the classi cation depends on mesh resolution and it not allows any point correction. Once small areas with little importance can be formed requiring eliminate them. In order to adjust the result, it applies the Voronoi diagram, characterized by its comprisement and close relationship and scope, as a tool to aggregate regions previously classi ed and allow a local adjustment, that can provides a consistent result in study areas, if it was compared to the corresponding geomorphological maps
Mestre
Kidner, David B. "Digital terrain models for radio path loss calculations." Thesis, University of South Wales, 1991. https://pure.southwales.ac.uk/en/studentthesis/digital-terrain-models-for-radio-path-loss-calculations(6733f679-d3c0-4a25-916f-0464321ea520).html.
Full textTerei, Gabor. "A thorough investigation of digital terrain model generalization using adaptive filtering /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488193272068463.
Full textFabian, Christopher J. "Application of a digital terrain model for forrest land classification and soil survey." Diss., Columbia, Mo. : University of Missouri-Columbia, 2004. http://hdl.handle.net/10355/4107.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (June 30, 2006). Vita. Includes bibliographical references.
Hartshorne, James Byng. "Assessing the influence of digital terrain model characteristics on tropical slope stability analysis." Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336822.
Full textGillin, Cody Palmer. "Digital terrain analysis to predict soil spatial patterns at the Hubbard Brook Experimental Forest." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50818.
Full textMaster of Science
Jordan, Gyözö. "Terrain Modelling with GIS for Tectonic Geomorphology : Numerical Methods and Applications." Doctoral thesis, Uppsala universitet, Miljö- och landskapsdynamik, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4635.
Full textHeliani, Leni Sophia. "Determination of the Indonesian gravity fields from combination of surface gravity, satellite altimeter and digital terrain model data." 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/149084.
Full textGalindo, José Roberto Fernandes. "Análise da reconstrução 3D a partir de um par estereoscópico HR-CCD/CBERS-2 usando dois modelos matemáticos /." Presidente Prudente, 2008. http://hdl.handle.net/11449/86785.
Full textAbstract: Since the advent of the first Remote Sensing satellites, many studies have been developed with the intention of using the images produced by these sensors for cartographic purpose. Although these images of the average resolution do not possess the accuracy required for cartographic applications in big scales, their advantages include being multispectral, periodic repetition of acquisition, and lower cost when compared to images obtained through traditional aerial photogrammetric surveys. An improvement present in medium and high resolution satellites is their off nadir capacity, which allows 3D reconstruction based on stereoscopy, the generation of digital elevation models (DEM) and the production of orthorectified images, among others products. With the first stereoscopic pairs acquired by the CBERS-2 (2004) HR-CCD (High Resolution Charge-Coupled Device) sensor, the possibility now exists of realizing studies whose goal is generating cartographic products from these stereo pairs. Within this context, this work evaluated the geometric quality of a CBERS-2 HR-CCD stereo pair making use of the DLT (Direct Linear Transformation) mathematical model and Polynomial-Based Pushbroom model, available from the Leica Photogrammetry Suite (LPS) digital photogrammetry system by Leica Geosystems, classifying them in accordance with the Cartographic Accuracy Standards... (Complete abstract click electronic access below)
Orientador: Júlio Kiyoshi Hasegawa
Coorientador: Maurício Galo
Banca: João Fernando Custódio da Silva
Banca: Hideo Araki
Mestre
McKeon, Sean Patrick. "A GPU Stream Computing Approach to Terrain Database Integrity Monitoring." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/cs_theses/65.
Full textBooks on the topic "Digital terrain model. eng"
Twito, Roger H. The MAP program: Building the digital terrain model. [Portland, Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1987.
Find full textTwito, Roger H. The MAP program: Building the digital terrain model. [Portland, Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1987.
Find full textTwito, Roger H. The MAP program: Building the digital terrain model. [Portland Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1987.
Find full textCampbell, Russell H. Geographic information system (GIS) procedure for preliminary delineation of debris-flow hazard areas from a digital terrain model, Madison County, Virginia. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Find full textBook chapters on the topic "Digital terrain model. eng"
Colgan, Anja, and Ralf Ludwig. "Digital Terrain Model." In Regional Assessment of Global Change Impacts, 69–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16751-0_7.
Full textPfeifer, Norbert, and Gottfried Mandlburger. "LiDAR Data Filtering and Digital Terrain Model Generation." In Topographic Laser Ranging and Scanning, 349–78. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315154381-11.
Full textFloriani, Leila, and Paola Magillo. "Computing visibility maps on a digital terrain model." In Lecture Notes in Computer Science, 248–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57207-4_17.
Full textMa, Zhiqiang, Anthony Watson, and Wanwu Guo. "Application of MCDF Operations in Digital Terrain Model Processing." In Computational Science and Its Applications – ICCSA 2004, 471–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24768-5_50.
Full textEmmendorfer, Leonardo Ramos, Isadora Bicho Emmendorfer, Luis Pedro Melo de Almeida, Deivid Cristian Leal Alves, and Jorge Arigony Neto. "A Self-interpolation Method for Digital Terrain Model Generation." In Computational Science and Its Applications – ICCSA 2021, 352–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86653-2_26.
Full textMaleika, Wojciech, and Paweł Forczmański. "Lossless Compression Method for Digital Terrain Model of Seabed Shape." In Advances in Intelligent Systems and Computing, 154–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47274-4_18.
Full textDurand, Philippe, Luan Jaupi, and Dariush Ghorbanzadeh. "Construction of Radar SAR Images from Digital Terrain Model and Geometric Corrections." In Transactions on Engineering Technologies, 657–68. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9804-4_46.
Full textOzyurt, Murat, Tuna Tugcu, and Fatih Alagoz. "Digital Terrain Model Interpolation for Mobile Devices Using DTED Level 0 Elevation Data." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 208–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01802-2_16.
Full textRajabi, Mohammad A., and J. A. Rod Blais. "Improvement of Digital Terrain Model Interpolation Using SFS Techniques with Single Satellite Imagery." In Lecture Notes in Computer Science, 164–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47789-6_17.
Full textAl Balasmeh, Odai Ibrahim Mohammed, and Tapas Karmaker. "Accuracy Assessment of the Digital Elevation Model, Digital Terrain Model (DTM) from Aerial Stereo Pairs and Contour Maps for Hydrological Parameters." In Lecture Notes in Civil Engineering, 461–70. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7067-0_35.
Full textConference papers on the topic "Digital terrain model. eng"
Datar, Makarand, Michael Tercha, Charles Pergantis, Ali Manesh, and Dan Negrut. "A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35680.
Full textRuzickova, Katerina. "DIGITAL TERRAIN MODEL AND LANDFORMS CLASSIFICATION." In 13th SGEM GeoConference on INFORMATICS, GEOINFORMATICS AND REMOTE SENSING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/bb2.v1/s08.013.
Full textNar, Fatih, Erdal Yilmaz, and Gustau Camps-Valls. "Sparsity-Driven Digital Terrain Model Extraction." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8517569.
Full textDanciu, Valentin. "FUZZY FUNCTIONS FOR DIGITAL TERRAIN MODEL." In 14th SGEM GeoConference on INFORMATICS, GEOINFORMATICS AND REMOTE SENSING. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b22/s9.033.
Full textGheshlaghi, Fatemeh, Zeinab El-Sayegh, Moustafa El-Gindy, Fredrik Oijer, and Inge Johansson. "Advanced Analytical Truck Tires-Terrain Interaction Model." In SAE WCX Digital Summit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-01-0329.
Full textKnyaz, Vladimir A. "Deep learning performance for digital terrain model generation." In Image and Signal Processing for Remote Sensing, edited by Lorenzo Bruzzone, Francesca Bovolo, and Jon Atli Benediktsson. SPIE, 2018. http://dx.doi.org/10.1117/12.2325768.
Full textCohen, L. D., E. Bardinet, and Nicholas Ayache. "Reconstruction of digital terrain model with a lake." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Baba C. Vemuri. SPIE, 1993. http://dx.doi.org/10.1117/12.146644.
Full textZang, Andi, Xin Chen, and Goce Trajcevski. "Digital Terrain Model Generation using LiDAR Ground Points." In SIGSPATIAL'15: 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2835022.2835024.
Full textDongiovanni, M., G. Lorusso, F. Intini, G. Nacci, and E. Celiberti. "FOREST FIRE LOCALIZATION WITHOUT USING DIGITAL TERRAIN MODEL." In Proceedings of the 10th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812833532_0103.
Full textPark, James, Joel T. Johnson, Kung-Hau Ding, Kristopher Kim, and Joseph Tenbarge. "Terrain clutter simulation using physics-based scattering model and digital terrain profile data." In SPIE Defense + Security, edited by Kenneth I. Ranney, Armin Doerry, G. Charmaine Gilbreath, and Chadwick Todd Hawley. SPIE, 2015. http://dx.doi.org/10.1117/12.2176974.
Full textReports on the topic "Digital terrain model. eng"
Twito, R. H., R. W. Mifflin, and R. J. McGaughey. The MAP program: building the digital terrain model. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1987. http://dx.doi.org/10.2737/pnw-gtr-200.
Full textGraff, Linda H. An Approach to Automated Terrain Classification from Digital Elevation Model. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada258210.
Full textSELLMEIER, Bettina, and Kurosch THURO. Possibilities and limitations of 2D and 3D rockfallsimulations concerning the Digital Terrain Model (DTM). Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0255.
Full textBlundell, S. Micro-terrain and canopy feature extraction by breakline and differencing analysis of gridded elevation models : identifying terrain model discontinuities with application to off-road mobility modeling. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40185.
Full textDigital Terrain Model (GDCTOPO1). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209791.
Full text