Academic literature on the topic 'Digrafia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digrafia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digrafia"
Braicovich, Teresa, and Elsa Osio. "Sobre el espectro del digrafo (h, j) adjunto de un multidigrafo K–regular." Revista de Matemática: Teoría y Aplicaciones 15, no. 2 (July 31, 2008): 187–93. http://dx.doi.org/10.15517/rmta.v15i2.39390.
Full textEleutério, Samuel, Helena Freire, Elisabete Ranchhod, and Jorge Baptista. "A System of Electronic Dictionaries of Portuguese." Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 19, no. 1 (January 1, 1995): 57–82. http://dx.doi.org/10.1075/li.19.1.04ele.
Full textStrnad, William. "Incipient Musings on Theory and Formation of Modern Korean Digraphia." Investigationes Linguisticae 40 (May 31, 2019): 25–48. http://dx.doi.org/10.14746/il.2018.40.3.
Full textLi, Jiang, Xiaoyan Duan, Qianran Wang, Lei Zhang, Fei Deng, Hualin Wang, Zhihong Hu, Manli Wang, and Jun Wang. "Genome Analysis of a Novel Clade II.b Alphabaculovirus Obtained from Artaxa digramma." Viruses 11, no. 10 (October 9, 2019): 925. http://dx.doi.org/10.3390/v11100925.
Full textRivlina, A. A. "GLOBAL ENGLISH-LOCAL DIGRAPHIA: TRANSLINGUAL ASPECT." RUDN Journal of Language Education and Translingual Practices 14, no. 2 (2017): 171–80. http://dx.doi.org/10.22363/2312-8011-2017-14-2-171-180.
Full textČepon, Robert. "Opažanja o glasovnem sistemu pamfilskega dialekta." Keria: Studia Latina et Graeca 7, no. 1 (July 6, 2005): 71. http://dx.doi.org/10.4312/keria.7.1.71-85.
Full textIswadi, Hazrul. "Digraf Eksentris Turnamen Tereduksi." Sains & Teknologi 1, no. 3 (October 17, 2019): 19. http://dx.doi.org/10.24123/jst.v1i3.2235.
Full textRohsenow, John S. "The present status of digraphia in China." International Journal of the Sociology of Language 2001, no. 150 (January 10, 2001): 125–40. http://dx.doi.org/10.1515/ijsl.2001.029.
Full textAkbar, Rahima, Hanan Taqi, and Taiba Sadiq. "Arabizi in Kuwait: An Emerging Case of digraphia." Language & Communication 74 (September 2020): 204–16. http://dx.doi.org/10.1016/j.langcom.2020.07.004.
Full textStrnad, William. "Questioning North Korea’s digraphic inflection point: Kim Il Sung’s 1964 and 1966 conversations with linguists reconsidered." Scripta Neophilologica Posnaniensia 21 (December 15, 2021): 263–81. http://dx.doi.org/10.14746/snp.2021.21.11.
Full textDissertations / Theses on the topic "Digrafia"
Carvalho, Marcelo Dantas de. "Classificação dos digrafos semicompletos hamiltonianos." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306861.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-26T16:57:25Z (GMT). No. of bitstreams: 1 Carvalho_MarceloDantasde_M.pdf: 1298387 bytes, checksum: 14167c08257e5465066717df5f9963e6 (MD5) Previous issue date: 2000
Resumo: 0 objetivo principal deste trabalho é apresentar uma classificação para os dígrafos semicompletos hamiltonianos, extendendo os resultados obtidos para os torneios. Para isso utilizamos da teoria da homotopia regular de grafos de Davide C. Demaria, apresentando resultados sobre torneios simplemente desconexos, a caracterização de torneios por 3-ciclos e o conceito de ciclo conado e não-conado para dígrafos, introduzido por Kiihl e Tironi. Com a noção de ciclo minimal e característico para dígrafo uma classificação para os dígrafos semicompletos hamiltonianos surge então naturalmente. Esses resultados, quando encontrados para torneios, proporcionaram a obtenção de uma classe de torneios reconstrutíveis (torneios normais) e pesquisa nesse sentido deve ser efetuada para dígrafos. Apresentamos em apêndice a matriz de um dígrafo, os torneios de moon, normais e, brevemente, o problema da reconstrução de grafos
Abstract: The main target in this work is to present a classification for the hamiltonian semicomplete digraphs, extending the results previously obtained for the tournaments. In this way we apply the regular homotopy of finite directed graphs theory developed by Davide G. Demaria, presenting results on simply disconnected tournaments, on the caracterization of tournaments by 3-cicles and the concept of coned and non-coned cicle for digraphs, introduced by Kiihl and Tironi. With the notion of minimal and caracteristic cicle we naturally get a classification of the semicomplete hamiltonian digraphs. These results, when used for tournaments led to a new class of reconstructible ones (named normal) and future research on the extension of these results for digraphs in general seems to be interesting. We present in appendixes the array of a digraph, the tournaments of Moon, Normal and, briefly, the reconstruction problem for graphs
Mestrado
Mestre em Matemática
Pereira, Luiz Fernando de Faria 1986. "Partições de digrafos em caminhos." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275634.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-23T03:38:43Z (GMT). No. of bitstreams: 1 Pereira_LuizFernandodeFaria_M.pdf: 862122 bytes, checksum: 06f038348723d2201293366e75808ffd (MD5) Previous issue date: 2013
Resumo: Uma partição em caminhos de um grafo dirigido é uma partição do conjunto de vértices deste grafo em caminhos dirigidos. Dada uma métrica sobre partições em caminhos chamada k-norma, o problema de interesse é estabelecer para um dado grafo quais das suas partições em caminhos tem a menor k-norma dentre todas as suas possíveis partições em caminhos. Chamamos estas partições de k-ótimas. Na década de 1980, Claude Berge conjecturou que para toda partição k-ótima, existe um conjunto de k conjuntos independentes disjuntos que, em certo sentido, interceptam o maior número possível de caminhos desta partição. A validade ou a falsidade desta proposição ainda não foi demonstrada, e ela é conhecida como a conjectura de Berge sobre partições em caminhos. Nesta dissertação, fizemos um estudo geral sobre a conjectura de Berge, sua história recente, e o trabalho matemático que foi desenvolvido sobre ela. Exibimos demonstrações para diversos casos particulares da conjectura que já foram resolvidos, como para grafos bipartidos, hamiltonianos, acíclicos, partições compostas somente de caminhos curtos, partições compostas somente de caminhos longos, e para valores fixos de k. Uma parte significativa do trabalho foi dedicada à reescrita da demonstração recente do caso particular onde k = 2, feita por Eli Berger e Irith Hartman, e uma análise do método usado
Abstract: A path partition of a directed graph is a partition of its vertex set into directed paths. Given a metric over path partitions called the k-norm, the problem we are interested in is to determine for a given graph which of its path partitions have the smallest k-norm among all possible path partitions. These partitions are called k-optimal. In the 1980's, Claude Berge conjectured that for every k-optimal path partition, there exists a set of k disjoint independent sets which intercepts the maximum number of paths in this partition. The validity of this proposition has not yet been demonstrated, and it is known as Berge's conjecture on path partitions. In this work, we consider Berge's conjecture, its recent history, and the related mathematical work that has been accomplished. We show proofs for many particular cases of the conjecture, including for acyclic graphs, bipartite graphs, hamiltonian graphs, partitions which include only short paths, partitions which include only long paths, and for fixed values of k. A significant part of this work was dedicated to the rewriting of a recent proof for the particular case where k = 2 by Eli Berger and Irith Hartman, and an analysis of their method
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
LU, HUIZHONG. "STUDI DI TERMINOLOGIA CINESE: APPROCCI DIACRONICI E SVILUPPI APPLICATIVI CONTEMPORANEI." Doctoral thesis, Università Cattolica del Sacro Cuore, 2014. http://hdl.handle.net/10280/3674.
Full textThis research aims to illustrate the methodes used for creation of the specialized terminologies in the technical and scientific fields in the XXI century’s Chinese language. A pathway crossing the history of sciences in China from the III century B.C. until our days, reconstructs the rules that step after step the Chinese scholars have established in order to create and manage their “words” with the lot of characters, the hanzi, symbol of the Chinese culture and civilization, icons that still today “speak” to the readers, graphical expressions of objects and concepts. The presentation of the work of Feng Zhiwei, one among the greatest exponents of the contemporary Chinese terminology, is our guideline in a close examination of the Chinese terminological studies’ orientations, in comparison with the euro-americans ones, starting from the studies developed by Eugen Wüster at the beginning of the XX century. The analysis of the Chinese terminology in the photovoltaic technology and in the economic-financial world, constitutes the ground of verification of the actual terminological practices in the Chinese language and the tendencies in the neological and neonymical construction.
LU, HUIZHONG. "STUDI DI TERMINOLOGIA CINESE: APPROCCI DIACRONICI E SVILUPPI APPLICATIVI CONTEMPORANEI." Doctoral thesis, Università Cattolica del Sacro Cuore, 2014. http://hdl.handle.net/10280/3674.
Full textThis research aims to illustrate the methodes used for creation of the specialized terminologies in the technical and scientific fields in the XXI century’s Chinese language. A pathway crossing the history of sciences in China from the III century B.C. until our days, reconstructs the rules that step after step the Chinese scholars have established in order to create and manage their “words” with the lot of characters, the hanzi, symbol of the Chinese culture and civilization, icons that still today “speak” to the readers, graphical expressions of objects and concepts. The presentation of the work of Feng Zhiwei, one among the greatest exponents of the contemporary Chinese terminology, is our guideline in a close examination of the Chinese terminological studies’ orientations, in comparison with the euro-americans ones, starting from the studies developed by Eugen Wüster at the beginning of the XX century. The analysis of the Chinese terminology in the photovoltaic technology and in the economic-financial world, constitutes the ground of verification of the actual terminological practices in the Chinese language and the tendencies in the neological and neonymical construction.
Pérez, Mansilla Sonia. "RECUBRIMIENTOS K-ARCO TRANSITIVOS DE DIGRAFOS." Doctoral thesis, Universitat Politècnica de Catalunya, 2001. http://hdl.handle.net/10803/5827.
Full textLa forma en que se estructura esta memoria es la siguiente:
En los primeros Capítulos incluimos la notación y terminología básica de digrafos que utilizaremos a lo largo de la Tesis, así como un estado del arte de otras construcciones de digrafos k-arco transitivos conocidas hasta la fecha. Introducimos también las herramientas claves para nuestra construcción de digrafos k-arco transitivos como son las 1-factorizaciones y los recubrimientos de digrafos. En particular, definimos los recubrimientos de Cayley de digrafos arco-coloreados.
En el Capítulo 3 presentamos nuestra construcción de digrafos k-arco transitivos, que es también una técnica de construcción de recubrimientos k-arco transitivos de digrafos conexos regulares arbitrarios para cada entero positivo k. Como técnica de contrucción de recubrimientos k-arco transitivos, generaliza los resultados de Babai de 1985 para los casos k=0,1. La idea de la construcción consiste en escoger recubrimientos vértice transitivos "apropiados" del digrafo línea k-línea iterado del digrafo de partida, de manera que estos recubrimientos sean también digrafos k-línea iterados. Además, los digrafos k-arco transitivos de los que son k-línea iterados resultan ser además recubrimientos del digrafo de partida. Los recubrimientos "apropiados" de los digrafos k-línea iterados son recubrimientos de Cayley de los digrafos con 1-factorizaciones k-uniformes. Previamente, definimos las 1-factorizaciones k-uniformes de digrafos k-línea iterados y probamos que todo digrafo k-línea iterado admite 1-factorizaciones de este tipo.
En el Capítulo 4 introducimos el concepto de cuadrado latino uniforme y damos una caracterización de las 1-factorizaciones 1-uniformes de digrafos línea en términos de cuadrados latinos uniformes. En particular, obtenemos el número de 1-factorizaciones 1-uniformes de un digrafo línea en función del número de cuadrados latinos uniformes de manera constructiva. Se demuestra también que los cuadrados latinos uniformes son isomorfos al cuadrado latino de la tabla de composición de un grupo del mismo orden. Como consecuencia, calculamos explicítamente los cuadrados latinos uniformes de orden pequeño y obtenemos las 1-factorizaciones 1-uniformes de digrafos línea de grado pequeño de algunas familias de digrafos. La última parte del capítulo la dedicamos a la representación de grupos de permutaciones que actúan regularmente en el conjunto de arcos de un digrafo.
En el Capítulo 5 estudiamos el grupo de automorfismos de los recubrimientos k-arco transitivos que obtenemos con nuestra técnica. Se dan resultados interesantes en términos de la normalidad para los recubrimientos de Cayley de grado dos. Por último en este capítulo, estudiamos la estructura del grupo de automorfismos de los digrafos k-arco transitivos que son homeomorfos a un ciclo y en particular, vemos que un digrafo de Cayley es homeomorfo a un ciclo si y sólo si existe un subgrupo normal del grupo base tal que los generadores están contenidos en una de las clases laterales del subgrupo.
A digraph or directed graph is said k-arc transitive if it has automorphism group that acts transitively on the set of k-arcs. For a positive integer k, a k-arc of a digraph is a sequence (x0,x1,.,xk) of k+1 vertices of the digraph such that for each i=0,.,k, (xi,xi+1) is an arc of the digraph. Digraphs in this class have high symmetry and so they can be useful as models of transmission and diffusion of the information. One of the problems we work on this Thesis is the modelation of topologies of highly symmetric interconnection networks using k-arc transitive digraphs. Thus, the first part of the Thesis is devoted to the construction of k-arc transitive digraphs, which is one of the main contributions of this Thesis.
The memory of the Thesis is structured as follows.
In the firstly chapters we introduced the notation and basic terminology about graphs that we are going to use throughout the Thesis. Moreover, we include a short background about another constructions of k-arc transitive digraphs known up to now. We also include the main ingredients for our construction of k-arc transitive digraphs as the 1-factorizations and covers of digraphs. In particular, we define the Cayley covers of arc-colored digraphs.
In Chapter 3 we present our construction of k-arc transitive digraphs, which is also a technique to construct k-arc transitive covers of connected regular arbitrary digraphs for every positive integer k. As a construction tecnique of k-arc transitive digraphs, it generalizes results of Babai of 1995 for the cases k=0,1. The idea of the construction consists of choosing 'appropiate' vertex transitive covers of the k-line iterated digraph of the starting digraph in such a way that this covers are also k-line iterated digraphs. Furthermore, the k-arc transitive digraphs of which they are k-line iterated digraphs turn out to be covers of the starting digraph. The 'appropiate' covers of k-line iterated digraphs are Cayley covers of digraphs with k-uniform 1-factorization. Previously, we define a k-uniform 1-factorization of a k-line iterated digraph and we prove that every regular digraph admits 1-factorizations of this kind.
In Chapter 4 we introduce the concept of uniform latin square and we give a characterization of the 1-uniform 1-factorizations of line digraphs in terms of uniform latin squares. In particular, we obtain the number of 1-uniform 1-factorizations of a line digraph as a function of the number of uniform latin squares in a constructive way. We also prove that uniform latin squares are isomorphic to a latin square of the composition table of a group of the same size (in fact, the group is the complete set of discordant permutations obtained by the columns of the latin square). As a consequence, we calculate explicitly the uniform latin squares of small order and we obtain the 1-uniform 1-factorization of line digraphs of small degree of some families of digraphs. The last part of this chapter is devoted to the representation of permutation groups that acts regularly on the set of arcs of a digraph.
In Chapter 5 we study the automorphism group of the k-arc transitive covers we obtain with our technique. We give some results in terms of the normality for the Cayley covers of degree two. Finally in this chapter, we study the structure of the automorphism group of the k-arc transitive digraphs homomorphic to a directed cycle. In particular, we see that a Cayley digraph is homomorphic to a cycle if and only if there exists a normal subgroup of the base group such that the generators are contained in one of the cosets of the subgroup.
Parente, Roberto Freitas. "Empacotamento e contagem em digrafos: cenários aleatórios e extremais." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-24052017-183349/.
Full textIn this thesis we study two problems dealing with digraphs: a packing problem and a counting problem. We study the problem of packing the maximum number of arborescences in the random digraph D(n,p), where each possible arc is included uniformly at random with probability p = p(n). Let (D(n,p)) denote the largest integer 0 such that, for all 0 l , we have ^(l-1)_i=0 (l-i)|{v in d^in(v) = i}|. We show that the maximum number of arc-disjoint arborescences in D(n, p) is (D(n, p)) asymptotically almost surely. We also give tight estimates for (D(n, p)) for every p [0, 1]. The main tools that we used were expansion properties of random digraphs, the behavior of in-degree of random digraphs and a classic result by Frank relating subpartitions and number of arborescences. For the counting problem, we study the density of fixed strongly connected subtournaments on 5 vertices in large tournaments. We determine the maximum density asymptotically for five tournaments as well as unique extremal sequences for each tournament. As a byproduct of this study we also characterize tournaments that are recursive blow-ups of a 3-cycle as tournaments that avoid three specific tournaments of size 5. We use the theory of flag algebras as a main tool for this problem and combinatorial settings obtained from semidefinite method.
Dalfó, Simó Cristina. "Estudi i disseny de grans xarxes d'interconnexió: modularitat i comunicació." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5849.
Full textLarge interconnection or communication networks are usually designed and studied by using techniques from graph theory. This work presents some contributions to this subject. With this aim, two new operations are proposed: the "hierarchical product" of graphs and the "Manhattan product" of digraphs. The former can be seen as a generalization of the Cartesian product of graphs and allows us to construct some interesting families with a high degree of hierarchy, such as the well-know binomial tree, which is a data structure very used in the context of computer science. The latter yields, in particular, the known topologies of Manhattan Street Networks, which has been widely studied and used for modelling some classes of light-wave networks. In this thesis, a multidimensional approach is analyzed. Several properties of the graphs or digraphs obtained by both operations are dealt with, but special attention is paid to the study of their structural parameters (operation properties, induced subdigraphs, degree distribution and line digraph structure), metric parameters (diameter, radius and mean distance), symmetry (automorphism groups and Cayley digraphs), cycle structure (Hamilton cycles and arc-disjoint Hamiltonian decomposition) and spectral properties (eigenvalues and eigenvectors). For instance, with respect to the last issue, it is shown that some families of hypertrees have spectra with all different eigenvalues "filling up" all the real line. Moreover, we show the relationship between its eigenvector set and Chebyshev polynomials of the second kind. Also some protocols of communication, such as local routing and broadcasting algorithms, are addressed. Finally, some deterministic models (Sierpinsky networks and others) having similar properties as some real complex networks, such as the Internet, are presented.
Carmona, Mejías Ángeles. "Grafos y digrafos con máxima conectividad y máxima distancia conectividad." Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/6716.
Full textMachado, Arlene Fortunato 1941. "Uma generalização do problema de seleção de vertices em digrafos." [s.n.], 1991. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260203.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica.
Made available in DSpace on 2018-07-13T23:49:57Z (GMT). No. of bitstreams: 1 Machado_ArleneFortunato_D.pdf: 7694121 bytes, checksum: 0d9d500491ffd36e83900ea3de723bc0 (MD5) Previous issue date: 1991
Resumo: Este trabalho apresenta um estudo de uma generalização de um problema de seleção de vértices em digrafos e propõe a resolução deste problema através de métodos iterativos, em que em cada iteração, um problema de seleção é resolvido. A importância deste problema é devida ao seu relacionamento com alguns problemas clássicos de otimização (designação, bemparelhamento bipartido de custo máximo, fluxo de custo mínimo). É também, apresentado um estudo para um problema de seleção de vértices de um digrafo, estabelecendo relações entre este problema e o de b-emparelhamento máximo bipartido. Algoritmos para os problemas de b-emparelhamento máximo bipartido, seleção de vértices e seleção de vértices generalizada são desenvolvidos. Os algoritmos apresentados para um mesmo problema são comparados entre si
Abstract: A generalization of a vertex selection problem is presented and a resolution of this problem using an iterative method is proposed. A vertex selection problem is solved in each iteration of this method. The importance of this problem lies on its relationship to some classical optimization problems (assignment, maximum cost bipartite b-matching, minimum cost flow). A study of a vertex selection problem in a digraph is also presented. A relationship between this problem and the maximum bipartite b-matching problem is established. Algorithms to solve the maximum bipartite b-matching, the vertex selection and the generalized vertex selection problems are developed and the algorithms for each of the problems are compared.
Doutorado
Doutor em Engenharia Elétrica
Balbuena, Martínez Camino. "Estudio sobre algunas nuevas clases de conectividad condicional en grafos dirigidos." Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/6726.
Full textEn esta tesis presentamos condiciones suficientes de dos tipos que garantizan altas conectividades condicionales: cotas superiores sobre diámetro y cotas inferiores sobre el orden, ambas formuladas en términos del girth en el caso de grafos, o bien en función del semigirth l en el caso de digrafos.
El primer tipo de conectividad condicional abordada es la t-distancia conectividad que juega un papel importante a la hora de medir la fiabilidad de la red como una función de la distancia entre los nodos que queremos comunicar. En este caso se requiere que los conjuntos desconectadotes separen vértices que estaban suficientemente alejados en el (di)grafo original. Se define el t-grado y se muestra que los parámetros que miden la t-distancia conectividad la arco t-distancia conectividad y el t-grado están relacionados por desigualdades que generalizan las desigualdades conocidas para las conectividades estándar. Además, se prueba que otra de las propiedades que estos nuevos parámetros mantienen es la independencia.
El trabajo realizado previamente permite profundizar en el estudio de la superconectividad de (di)grafos y de digrafos bipartitos. Se aborda el problema de desconectar de manera no trivial un digrafo superconectado, centrándonos en calcular la máxima distancia a la que se encuentra alejado un vértice de un conjunto desconectador no trivial de cardinal relativamente pequeño. Se introducen los parámetros que miden la superconectividad de un digrafo superconectado, y se estudian condiciones suficientes sobre el diámetro y el orden para obtener cotas inferiores sobre estas medidas de superconectividad. Por último se desarrolla un estudio en el caso de grafos, paralelo al realizado en el caso dirigido. Se expone una tabla en cuyas entradas figuran los órdenes de los grafos con el mayor número de vértices que se conocen hasta el momento junto con sus conectividades respectivas.
La última parte de la tesis está dedicado al estudio de grafos que modelan redes conectadas de forma óptima con respecto a la siguiente propiedad de tolerancia a fallos: Cuando algunos nodos o uniones fallan, se exige que en las componentes que se determinan en la red haya un número mínimo de nodos conectados entre sí. Esta conectividad condicional se denomina extraconectividad, que corresponde con la propiedad consistente en tener al menos un cierto número de vértices. Desde este punto de vista, tanto la conectividad estándar como la superconectividad, constituyen medidas de conectividad condicional. El trabajo llevado a cabo mejora sustancialmente las primeras condiciones suficientes sobre el diámetro dadas por Fiol y Fàbrega quienes ya habían conjeturado que la cota superior sobre el diámetro que se había encontrado era posible mejorarla.
The conditional connectivity defined by Harary in 1983, gives the minimum number of vertices or edges which have to be eliminated from a graph or a digraph in such a way all the resulting connected components satisfy a determined property The importance of the different types of conditional connectivity is linked to the concept of survival of the components that determine when the network is interrupted, which is expressed by specifying the properties of these components. They include both connectivity standard as superconectividad as they can be interpreted as a conditional connectivities with respect to the property that is to have more than zero points or a vertex respectively.
In this thesis we present sufficient conditions of two types that guarantee high conditional connectivities: upper bounds on diameter and lower bounds on the order, both in terms of girth made in the case graph, or in terms of semigirth l in the directed case.
The first type of conditional connectivity addressed is the t-distance connectivity that plays an important role in measuring the reliability of the network as a function of the distance between the nodes that we want to communicate. In this case disconnecting sets are required to separate vertices that were sufficiently distant in the original (di)graph. The t-degree is defined and it is shown that the parameters that measure the t-distance connectivity the arc t-distance connectivity and t-degree inequalities are related by the same inequalities known for standard connectivities. In addition, it is proved that another of the properties that these new parameters keep is the independence.
The work done previously allows to study in depth the superconectivity of digraphs and bipartite digraphs. It addresses the problem of disconnecting in a non-trivial way a superconnected digraph, focusing on calculating the maximum distance that is a remote vertex from a non-trivial disconnecting set of cardinality relatively small. The superconnectivity parameters are introduced and sufficient conditions on the diameter and on the order to obtain good measures of superconnectivity are given. Finally, there has been a case study in graphs, conducted in parallel to the directed case addressed. A table whose entries include orders of the graph with the largest number of vertices that are known so far along with their respective connectivities is exposed.
The last part of the thesis is devoted to the study of connected graphs modeling networks in an optimal way with respect to the following property of fault tolerance: When some nodes or links fail, it is required that all the components that are determined by the network have a minimum number of nodes connected to each other.
This kind of conditional connectivity is called extraconectivity, and corresponds to the property of having at least a certain number of vertices. From this point of view, both as the standard connectivity and superconectivity constitute measures of conditional connectivity. The work carried out substantially improves the early sufficient conditions on the diameter given by Fiol and Fàbrega who had already conjetured that the upper bound on the diameter, which they had been found could be improved.
Books on the topic "Digrafia"
Walker, Taisia, and Carlos Otavio R. Costa. Caderno de Escrita: Digrafos e Encontros Consonantais. PortuLer, 2022.
Find full textBook chapters on the topic "Digrafia"
Larsson, Inger. "Nordic Digraphia and Diglossia." In Spoken and Written Language, 73–85. Turnhout: Brepols Publishers, 2013. http://dx.doi.org/10.1484/m.usml-eb.5.100913.
Full textPanteli, Alexandros, and Manolis Maragoudakis. "A Random Forests Text Transliteration System for Greek Digraphia." In IFIP Advances in Information and Communication Technology, 196–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23960-1_24.
Full textYamaba, Hisaaki, Ahmad Saiful Aqmal Bin Ahmad Sohaimi, Shotaro Usuzaki, Kentaro Aburada, Masayuki Mukunoki, Mirang Park, and Naonobu Okazaki. "Proposal of Jawi CAPTCHA Using Digraphia Feature of the Malay Language." In Advances in Information and Computer Security, 119–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85987-9_7.
Full text"Bilingualism Meets Digraphia: Script Alternation and Hybridity in Russian-American Writing and Beyond: Philipp Sebastian Angermeyer." In Language Mixing and Code-Switching in Writing, 264–81. Routledge, 2012. http://dx.doi.org/10.4324/9780203136133-18.
Full textConference papers on the topic "Digrafia"
Borodzhieva, Adriana, and Plamen Manoilov. "Matlab-Based Software Tool for Implementation of Digrafid Ciphers Using a Modified Algorithm with 64-Symbol Alphabet." In CompSysTech'18: 19th International Conference on Computer Systems and Technologies. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3274005.3274025.
Full textOliveira, S. L. Gonzaga de, M. I. Santana, D. Brandão, and C. Osthoff. "Uma implementação da busca em largura com estrutura bag e OpenMP." In Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/wscad.2021.18507.
Full textMaia, A. Karolinna, Jonas Costa, and Raul Lopes. "Fluxos Ramificados Arco-disjuntos em Redes de Capacidade Restrita⇤." In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3162.
Full text