Academic literature on the topic 'Digraph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digraph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digraph"
Luo, Mei Jin. "The Upper Bound of Primitive Exponent of a Class of Special Nonnegative Matrix Pairs." Advanced Materials Research 1061-1062 (December 2014): 1100–1103. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.1100.
Full textRUAN, LU, SHITOU HAN, DEYING LI, HUNG Q. NGO, and SCOTT C. H. HUANG. "TRANSMISSION FAULT-TOLERANCE OF ITERATED LINE DIGRAPHS." Journal of Interconnection Networks 05, no. 04 (December 2004): 475–87. http://dx.doi.org/10.1142/s021926590400126x.
Full textFERRARA, MICHAEL, MICHAEL JACOBSON, and FLORIAN PFENDER. "Degree Conditions for H-Linked Digraphs." Combinatorics, Probability and Computing 22, no. 5 (August 8, 2013): 684–99. http://dx.doi.org/10.1017/s0963548313000278.
Full textLuo, Mei Jin. "The Primitive Exponent of a Class of Special Nonnegative Matrix Pairs." Advanced Materials Research 915-916 (April 2014): 1296–99. http://dx.doi.org/10.4028/www.scientific.net/amr.915-916.1296.
Full textYang, Xiuliang, and Haobo Yang. "ISOMORPHISMS OF TRANSFORMATION SEMIGROUPS ASSOCIATED WITH SIMPLE DIGRAPHS." Asian-European Journal of Mathematics 02, no. 04 (December 2009): 727–37. http://dx.doi.org/10.1142/s1793557109000601.
Full textElmali, Ceren Sultan, Tamer Uğur, and Tuǧçe Kunduraci. "On New Knot Tables." ITM Web of Conferences 22 (2018): 01019. http://dx.doi.org/10.1051/itmconf/20182201019.
Full textYang, Xiuwen, Xiaogang Liu, and Ligong Wang. "On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs." Electronic Journal of Linear Algebra 39 (July 20, 2023): 409–22. http://dx.doi.org/10.13001/ela.2023.7503.
Full textSmerchinskaya, Svetlana O., and Nina P. Yashina. "Preference levels for clusters of alternatives." International Journal of Modeling, Simulation, and Scientific Computing 10, no. 04 (August 2019): 1950019. http://dx.doi.org/10.1142/s1793962319500193.
Full textAlomari, Omar, Mohammad Abudayah, and Torsten Sander. "The non-negative spectrum of a digraph." Open Mathematics 18, no. 1 (February 19, 2020): 22–35. http://dx.doi.org/10.1515/math-2020-0005.
Full textShi, Mei, Weihao Xia, Mingyue Xiao, and Jihui Wang. "The majority coloring of the join and Cartesian product of some digraph." MATEC Web of Conferences 355 (2022): 02004. http://dx.doi.org/10.1051/matecconf/202235502004.
Full textDissertations / Theses on the topic "Digraph"
Moura, Phablo Fernando Soares. "Graph colorings and digraph subdivisions." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23052017-100619/.
Full textO problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.
Kim, Eun Jung. "Parameterized algorithms on digraph and constraint satisfaction problems." Thesis, Royal Holloway, University of London, 2010. http://repository.royalholloway.ac.uk/items/4e3a1971-6e98-97a9-8e4f-9e1fdc76066a/9/.
Full textMontalva, Medel Marco. "Problèmes type "Feedback Set" et comportement dynamique des réseaux de régulation." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00629549.
Full textOliveira, Ana Karolinna Maia de. "Subdivisions de digraphes." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4084/document.
Full textIn this work, we consider the following problem: Given a directed graph D, does it contain a subdivision of a prescribed digraph F? We believe that there is a dichotomy between NP-complete and polynomial-time solvable instances of this problem. We present many examples of both cases. In particular, except for five instances, we are able to classify all the digraphs F of order 4.While all NP-hardness proofs are made by reduction from some version of the 2-linkage problem in digraphs, we use different algorithmic tools for proving polynomial-time solvability of certain instances, some of them involving relatively complicated algorithms. The techniques vary from easy brute force algorithms, algorithms based on maximum-flow calculations, handle decompositions of strongly connected digraphs, among others. Finally, we treat the very special case of F being the disjoint union of directed cycles. In particular, we show that the directed cycles of length at least 3 have the Erdos-Pósa Property: for every n, there exists an integer tn such that for every digraph D, either D contains n disjoint directed cycles of length at least 3, or there is a set T of tn vertices that meets every directed cycle of length at least 3. From this result, we deduce that if F is the disjoint union of directed cycles of length at most 3, then one can decide in polynomial time if a digraph contains a subdivision of F
Li, Ruijuan. "k-ordered graphs & out-arc pancyclicity on digraphs." Aachen Mainz, 2009. http://d-nb.info/994128894/04.
Full textBajo, Calderon Erica. "An Exploration on the Hamiltonicity of Cayley Digraphs." Youngstown State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ysu161982054497591.
Full textKutz, Martin. "The Angel problem, positional games, and digraph roots strategies and complexity /." [S.l. : s.n.], 2004. http://www.diss.fu-berlin.de/2004/250/index.html.
Full textKelly, Emma Marie. "Application of a digraph model-based approach to system fault diagnostics." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/34430.
Full textGhazal, Salman. "Étude de la conjecture de Seymour sur le second voisinage." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00744560.
Full textSmith, Heather Christina. "Zero Divisors among Digraphs." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2120.
Full textBooks on the topic "Digraph"
Voshtina, Oltion. A value for digraph-restricted games. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1997.
Find full textAndrei, Neculai. Sparse systems: Digraph approach of large-scale linear systems theory. Köln: Verlag TÜV Rheinland, 1985.
Find full textBang-Jensen, Jørgen, and Gregory Z. Gutin. Digraphs. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-998-1.
Full textBang-Jensen, Jørgen, and Gregory Gutin. Digraphs. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-3886-0.
Full textLinda, Lesniak, and Behzad Mehdi, eds. Graphs & digraphs. 2nd ed. Monterey, Calif: Wadsworth & Brooks/Cole Advanced Books & Software, 1986.
Find full textLinda, Lesniak, and Zhang Ping 1957-, eds. Graphs & digraphs. 5th ed. Boca Raton, FL: Chapman and Hall/CRC, 2010.
Find full textLinda, Lesniak, ed. Graphs & digraphs. 4th ed. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textCompany, Steck-Vaughn, ed. Blends and digraphs: Fl. Austin, Tex: Steck-Vaughn Co., 2002.
Find full textCompany, Steck-Vaughn, ed. Blends and digraphs: Sp. Austin, Tex: Steck-Vaughn Co., 2002.
Find full textCompany, Steck-Vaughn, ed. Blends and digraphs: Wh. Austin, Tex: Steck-Vaughn Co., 2002.
Find full textBook chapters on the topic "Digraph"
Kottarathil, Jomon, Sudev Naduvath, and Joseph Varghese Kureethara. "Digraph Decompositions." In Graph Theory and Decomposition, 39–48. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003391678-3.
Full textKreutzer, Stephan, and Sebastian Ordyniak. "Digraph Decompositions and Monotonicity in Digraph Searching." In Graph-Theoretic Concepts in Computer Science, 336–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92248-3_30.
Full textGuo, Yubao, and Michel Surmacs. "Miscellaneous Digraph Classes." In Springer Monographs in Mathematics, 517–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71840-8_11.
Full textBisdorff, Raymond. "On Computing Digraph Kernels." In International Series in Operations Research & Management Science, 225–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90928-4_17.
Full textXu, Wei, Xiaole Yue, and Qun He. "Iterative Digraph Cell Mapping Method." In Global Analysis of Nonlinear Dynamics, 51–74. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3128-2_3.
Full textKirkland, Stephen J. "Digraph-based Conditioning for Markov Chains." In Positive Systems, 215–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44928-7_29.
Full textBerlinkov, Mikhail V. "Synchronizing Automata on Quasi-Eulerian Digraph." In Implementation and Application of Automata, 90–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31606-7_8.
Full textHochstättler, Winfried, and Johanna Wiehe. "The Chromatic Polynomial of a Digraph." In AIRO Springer Series, 1–14. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63072-0_1.
Full textKenkre, Sreyash, Vinayaka Pandit, Manish Purohit, and Rishi Saket. "On the Approximability of Digraph Ordering." In Algorithms - ESA 2015, 792–803. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48350-3_66.
Full textIto, Takehiro, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, and Kunihiro Wasa. "Reconfiguring Directed Trees in a Digraph." In Lecture Notes in Computer Science, 343–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89543-3_29.
Full textConference papers on the topic "Digraph"
Carvalho, Vinícius De Souza, Cândida Nunes Da Silva, and Orlando Lee. "Linial's Dual Conjecture for Path-Spine Digraphs." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/etc.2020.11098.
Full textZhou, Honglu, Advith Chegu, Samuel S. Sohn, Zuohui Fu, Gerard de Melo, and Mubbasir Kapadia. "Harnessing Neighborhood Modeling and Asymmetry Preservation for Digraph Representation Learning." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/731.
Full textSambinelli, M., C. N. Da Silva, and O. Lee. "Diperfect Digraphs." In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3173.
Full textSambinelli, M., C. N. Lintzmayer, C. N. Da Silva, and O. Lee. "Vertex partition problems in digraphs ⇤." In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3174.
Full textCruz, Jadder Bismarck de Sousa, Cândida Nunes da Silva, and Orlando Lee. "Some Partial Results on Linial's Conjecture for Matching-Spine Digraphs." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/etc.2021.16386.
Full textZhang, Yu, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. "DiGraph." In ASPLOS '19: Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3297858.3304029.
Full textMarshall, Linda, and Derrick Kourie. "Deriving a digraph isomorphism for digraph compliance measurement." In the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1899503.1899521.
Full textSilva, Caroline A. de Paula, Orlando Lee, and Cândida N. da Silva. "χ-Diperfect Digraphs." In Concurso de Teses e Dissertações. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/ctd.2023.229897.
Full textFranco, Álvaro J. P., and Marcelo E. Vendramin. "Super-colored paths in digraphs." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/etc.2021.16389.
Full textCohen, Gerard, Emanuela Fachini, and Janos Korner. "On digraph-different permutations." In 2008 International Symposium on Information Theory and Its Applications (ISITA). IEEE, 2008. http://dx.doi.org/10.1109/isita.2008.4895579.
Full textReports on the topic "Digraph"
Kucherova, Hanna, Anastasiia Didenko, Olena Kravets, Yuliia Honcharenko, and Aleksandr Uchitel. Scenario forecasting information transparency of subjects' under uncertainty and development of the knowledge economy. [б. в.], October 2020. http://dx.doi.org/10.31812/123456789/4469.
Full textGao, Chunkai, Francesco Bullo, and Jorge Cortes. Notes on Averaging Over Acyclic Digraphs and Discrete Coverage Control. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada459077.
Full text