To see the other types of publications on this topic, follow the link: Dihedral groups.

Dissertations / Theses on the topic 'Dihedral groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 25 dissertations / theses for your research on the topic 'Dihedral groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Sewell, Cynthia M. (Cynthia Marie). "The Eulerian Functions of Cyclic Groups, Dihedral Groups, and P-Groups." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc500684/.

Full text
Abstract:
In 1935, Philip Hall developed a formula for finding the number of ways of generating the group of symmetries of the icosahedron from a given number of its elements. In doing so, he defined a generalized Eulerian function. This thesis uses Hall's generalized Eulerian function to calculate generalized Eulerian functions for specific groups, namely: cyclic groups, dihedral groups, and p- groups.
APA, Harvard, Vancouver, ISO, and other styles
2

Nolla, de Celis Álvaro. "Dihedral groups and G-Hilbert schemes." Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/2000/.

Full text
Abstract:
Let G ⊂ GL(2,C) be a finite subgroup acting on the complex plane C2, and consider the following diagram C2 -> X <- π:Y where π is the minimal resolution of singularities. Since Du Val in the 1930s the explicit calculation of Y was made from X by blowing up the singularity at the origin, where we lose any information about the group G in the process. But, is there a direct relation between the resolution Y and the group G? McKay [McK80] in the late 1970s was the first to realise the link between the group action and the resolution Y , thus giving birth to the so called McKay correspondence. This beautiful correspondence establishes an equivalence between the geometry of the minimal resolution Y of the quotient singularity C2/G, and the G-equivariant geometry of C2.
APA, Harvard, Vancouver, ISO, and other styles
3

Allie, Imran. "Meta-Cayley Graphs on Dihedral Groups." University of the Western Cape, 2017. http://hdl.handle.net/11394/5440.

Full text
Abstract:
>Magister Scientiae - MSc
The pursuit of graphs which are vertex-transitive and non-Cayley on groups has been ongoing for some time. There has long been evidence to suggest that such graphs are a very rarety in occurrence. Much success has been had in this regard with various approaches being used. The aim of this thesis is to find such a class of graphs. We will take an algebraic approach. We will define Cayley graphs on loops, these loops necessarily not being groups. Specifically, we will define meta-Cayley graphs, which are vertex-transitive by construction. The loops in question are defined as the semi-direct product of groups, one of the groups being Z₂ consistently, the other being in the class of dihedral groups. In order to prove non-Cayleyness on groups, we will need to fully determine the automorphism groups of these graphs. Determining the automorphism groups is at the crux of the matter. Once these groups are determined, we may then apply Sabidussi's theorem. The theorem states that a graph is Cayley on groups if and only if its automorphism group contains a subgroup which acts regularly on its vertex set.
Chemicals Industries Education and Training Authority (CHIETA)
APA, Harvard, Vancouver, ISO, and other styles
4

Strayer, Michael Christopher. "Orders of Perfect Groups with Dihedral Involution Centralizers." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1365259761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

邵慰慈 and Wai-chee Shiu. "Schur rings over dihedral groups of order 2p." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31208873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shiu, Wai-chee. "Schur rings over dihedral groups of order 2p /." [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12364770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Banister, Melissa. "Separating Sets for the Alternating and Dihedral Groups." Scholarship @ Claremont, 2004. https://scholarship.claremont.edu/hmc_theses/158.

Full text
Abstract:
This thesis presents the results of an investigation into the representation theory of the alternating and dihedral groups and explores how their irreducible representations can be distinguished with the use of class sums.
APA, Harvard, Vancouver, ISO, and other styles
8

Celis, Alvaro Nolla de. "DIHEDRAL GROUPS, G-HILB and M$\theta$(Q,R)." 名古屋大学多元数理科学研究科, 2009. http://hdl.handle.net/2237/12262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Long Bao. "Fusions of character tables and schur rings of dihedral groups /." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2443.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Long Pham Bao. "Fusion of Character Tables and Schur Rings of Dihedral Groups." BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1429.

Full text
Abstract:
A finite group H is said to fuse to a finite group G if the class algebra of G is isomorphic to an S-ring over H which is a subalgebra of the class algebra of H. We will also say that G fuses from H. In this case, the classes and characters of H can fuse to give the character table of G. We investigate the case where H is the dihedral group. In many cases, G can be completely determined. In general, G can be proven to have many interesting properties. The theory is developed in terms of S-ring of Schur and Wielandt.
APA, Harvard, Vancouver, ISO, and other styles
11

Macquarrie, Jennifer. "Automorphism Groups of Quandles." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3226.

Full text
Abstract:
This thesis arose from a desire to better understand the structures of automorphism groups and inner automorphism groups of quandles. We compute and give the structure of the automorphism groups of all dihedral quandles. In their paper Matrices and Finite Quandles, Ho and Nelson found all quandles (up to isomorphism) of orders 3, 4, and 5 and determined their automorphism groups. Here we find the automorphism groups of all quandles of orders 6 and 7. There are, up to isomoprhism, 73 quandles of order 6 and 289 quandles of order 7.
APA, Harvard, Vancouver, ISO, and other styles
12

Hubbard, David. "The nonexistence of certain free pro-p extensions and capitulation in a family of dihedral extensions of Q /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bastian, Nicholas Lee. "Terwilliger Algebras for Several Finite Groups." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8897.

Full text
Abstract:
In this thesis, we will explore the structure of Terwilliger algebras over several different types of finite groups. We will begin by discussing what a Schur ring is, as well as providing many different results and examples of them. Following our discussion on Schur rings, we will move onto discussing association schemes as well as their properties. In particular, we will show every Schur ring gives rise to an association scheme. We will then define a Terwilliger algebra for any finite set, as well as discuss basic properties that hold for all Terwilliger algebras. After specializing to the case of Terwilliger algebras resulting from the orbits of a group, we will explore bounds of the dimension of such a Terwilliger algebra. We will also discuss the Wedderburn decomposition of a Terwilliger algebra resulting from the conjugacy classes of a group for any finite abelian group and any dihedral group.
APA, Harvard, Vancouver, ISO, and other styles
14

Muhie, Seid Kassaw. "A probabilistic approach to a classical result of ore." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33841.

Full text
Abstract:
The subgroup commutativity degree sd(G) of a finite group G was introduced almost ten years ago and deals with the number of commuting subgroups in the subgroups lattice L(G) of G. The extremal case sd(G) = 1 detects a class of groups classified by Iwasawa in 1941 (in fact sd(G) represents a probabilistic measure which allows us to understand how far is G from the groups of Iwasawa). Among them we have sd(G) = 1 when L(G) is distributive, that is, when G is cyclic. The characterization of a cyclic group by the distributivity of its lattice of subgroups is due to a classical result of Ore in 1938. Therefore sd(G) is strongly related to structural properties of L(G). Here we introduce a new notion of probability gsd(G) in which two arbitrary sublattices S(G) and T(G) of L(G) are involved simultaneously. In case S(G) = T(G) = L(G), we find exactly sd(G). Upper and lower bounds in terms of gsd(G) and sd(G) are among our main contributions, when the condition S(G) = T(G) = L(G) is removed. Then we investigate the problem of counting the pairs of commuting subgroups via an appropriate graph. Looking at the literature, we noted that a similar problem motivated the permutability graph of non–normal subgroups ΓN (G) in 1995, that is, the graph where all proper non– normal subgroups of G form the vertex set of ΓN (G) and two vertices H and K are joined if HK = KH. The graph ΓN (G) has been recently generalized via the notion of permutability graph of subgroups Γ(G), extending the vertex set to all proper subgroups of G and keeping the same criterion to join two vertices. We use gsd(G), in order to introduce the non–permutability graph of subgroups ΓL(G) ; its vertices are now given by the set L(G) − CL(G)(L(G)), where CL(G)(L(G)) is the smallest sublattice of L(G) containing all permutable subgroups of G, and we join two vertices H, K of ΓL(G) if HK 6= KH. We finally study some classical invariants for ΓL(G) and find numerical relations between the number of edges of ΓL(G) and gsd(G).
APA, Harvard, Vancouver, ISO, and other styles
15

Albuquerque, Flávio Alves de. "Classificação de Automorfismos de Grupos Finitos." Universidade Federal da Paraí­ba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/7355.

Full text
Abstract:
Made available in DSpace on 2015-05-15T11:46:00Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 564673 bytes, checksum: caec7ef95e0e9b70eb60b56bfa2f6547 (MD5) Previous issue date: 2011-08-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this paper we study finite Abelian groups, where state and prove the fundamental theorem of finitely generated abelian groups, as well as determine a characterization of automorphisms of a p-group, moreover, we exhibit an algorithm that determines the count of the number of automorphisms of p-groups. Finally, we show the automorphisms of the non-Abelian dihedral group.
Neste trabalho estudamos Grupos Abelianos finitos, onde enunciamos e provamos o Teorema fundamental dos grupos abelianos finitamente gerados, bem como determinamos uma caracterização dos automorfismos de um p-grupo, além disso, exibimos um algoritmo que determina a contagem do número de automorfismos desses p-grupos. Por fim, mostramos os automorfismos do grupo não-Abeliano Diedral .
APA, Harvard, Vancouver, ISO, and other styles
16

Helffer, B., M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, and thoffman@esi ac at. "Spectral Theory for the Dihedral Group." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1018.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Keller, Joseph Aaron. "Representations Associated to the Group Matrix." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/3902.

Full text
Abstract:
For a finite group G = {g_0 = 1, g_1,. . ., g_{n-1}} , we can associate independent variables x_0, x_1, . . ., x_{n-1} where x_i = x_{g_i}. There is a natural action of Aut(G) on C[x_0, . . . ,x_{n-})]. Let C_1, . . . , C_r be the conjugacy classes of G. If C = {g_{i_1}, g_{i_2}, . . . , g_{i_u }} is a conjugacy class, then let x(C) = x_{i_1} + x_{i_2} + . . . + x_{i_u}. Let ρG be the representation of Aut(G) on C[x_0, . . . , x_(n-1)]/〈x(C_1), . . . , x(C_r) 〉 and let Χ_G be the character afforded by ρ_G. If G is a dihedral group of the form D_2p, D_4p or D_{2p^2}, with p an odd prime, I show how Χ_G splits into irreducible constituents. I also show how the module C[x_0, . . . ,x_{n-1}]/ decomposes into irreducible submodules. This problem is motivated by results of Humphries [2] relating to random walks on groups and the group determinant.
APA, Harvard, Vancouver, ISO, and other styles
18

Soto, Melissa. "The Irreducible Representations of D2n." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/12.

Full text
Abstract:
Irreducible representations of a finite group over a field are important because all representations of a group are direct sums of irreducible representations. Maschke tells us that if φ is a representation of the finite group G of order n on the m-dimensional space V over the field K of complex numbers and if U is an invariant subspace of φ, then U has a complementary reducing subspace W . The objective of this thesis is to find all irreducible representations of the dihedral group D2n. The reason we will work with the dihedral group is because it is one of the first and most intuitive non-abelian group we encounter in abstract algebra. I will compute the representations and characters of D2n and my thesis will be an explanation of these computations. When n = 2k + 1 we will show that there are k + 2 irreducible representations of D2n, but when n = 2k we will see that D2n has k + 3 irreducible rep- resentations. To achieve this we will first give some background in group, ring, module, and vector space theory that is used in representation theory. We will then explain what general representation theory is. Finally we will show how we arrived at our conclusion.
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Zimu. "Fast Matrix Multiplication by Group Algebras." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/131.

Full text
Abstract:
Based on Cohn and Umans’ group-theoretic method, we embed matrix multiplication into several group algebras, including those of cyclic groups, dihedral groups, special linear groups and Frobenius groups. We prove that SL2(Fp) and PSL2(Fp) can realize the matrix tensor ⟨p, p, p⟩, i.e. it is possible to encode p × p matrix multiplication in the group algebra of such a group. We also find the lower bound for the order of an abelian group realizing ⟨n, n, n⟩ is n3. For Frobenius groups of the form Cq Cp, where p and q are primes, we find that the smallest admissible value of q must be in the range p4/3 ≤ q ≤ p2 − 2p + 3. We also develop an algorithm to find the smallest q for a given prime p.
APA, Harvard, Vancouver, ISO, and other styles
20

Guragac, Hami Sercan. "Equivariant Vector Fields On Three Dimensional Representation Spheres." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613781/index.pdf.

Full text
Abstract:
Let G be a finite group and V be an orthogonal four-dimensional real representation space of G where the action of G is non-free. We give necessary and sufficient conditions for the existence of a G-equivariant vector field on the representation sphere of V in the cases G is the dihedral group, the generalized quaternion group and the semidihedral group in terms of decomposition of V into irreducible representations. In the case G is abelian, where the solution is already known, we give a more elementary solution.
APA, Harvard, Vancouver, ISO, and other styles
21

Pedone, M. (Matteo). "Algebraic methods for constructing blur-invariant operators and their applications." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208770.

Full text
Abstract:
Abstract Image acquisition devices are always subject to physical limitations that often manifest as distortions in the appearance of the captured image. The most common types of distortions can be divided into two categories: geometric and radiometric distortions. Examples of the latter ones are: changes in brightness, contrast, or illumination, sensor noise and blur. Since image blur can have many different causes, it is usually not convenient and also computationally expensive to develop ad hoc algorithms to correct each specific type of blur. Instead, it is often possible to extract a blur-invariant representation of the image, and utilize such information to make algorithms that are insensitive to blur. The work presented here mainly focuses on developing techniques for the extraction and the application of blur-invariant operators. This thesis contains several contributions. First, we propose a generalized framework based on group theory to constructively generate complete blur-invariants. We construct novel operators that are invariant to a large family of blurs occurring in real scenarios: namely, those blurs that can be modeled by a convolution with a point-spread function having rotational symmetry, or combined rotational and axial symmetry. A second important contribution is represented by the utilization of such operators to develop an algorithm for blur-invariant translational image registration. This algorithm is experimentally demonstrated to be more robust than other state-of-the-art registration techniques. The blur-invariant registration algorithm is then used as pre-processing steps to several restoration methods based on image fusion, like depth-of-field extension, and multi-channel blind deconvolution. All the described techniques are then re-interpreted as a particular instance of Wiener deconvolution filtering. Thus, the third main contribution is the generalization of the blur-invariants and the registration techniques to color images, by using respectively a representation of color images based on quaternions, and the quaternion Wiener filter. This leads to the development of a blur-and-noise-robust registration algorithm for color images. We observe experimentally a significant increase in performance in both color texture recognition, and in blurred color image registration
Tiivistelmä Kuvauslaitteet ovat aina fyysisten olosuhteiden rajoittamia, mikä usein ilmenee tallennetun kuvan ilmiasun vääristyminä. Yleisimmät vääristymätyypit voidaan jakaa kahteen kategoriaan: geometrisiin ja radiometrisiin distortioihin. Jälkimmäisestä esimerkkejä ovat kirkkauden, kontrastin ja valon laadun muutokset sekä sensorin kohina ja kuvan sumeus. Koska kuvan sumeus voi johtua monista tekijöistä, yleensä ei ole tarkoitukseen sopivaa eikä laskennallisesti kannattavaa kehittää ad hoc algoritmeja erityyppisten sumeuksien korjaamiseen. Sitä vastoin on mahdollista erottaa kuvasta sumeuden invariantin edustuma ja käyttää tätä tietoa sumeudelle epäherkkien algoritmien tuottamiseen. Tässä väitöskirjassa keskitytään esittämään, millaisia eri tekniikoita voidaan käyttää sumeuden invarianttien operaattoreiden muodostamiseen ja sovellusten kehittämiseen. Tämä opinnäyte sisältää useammanlaista tieteellistä vaikuttavuutta. Ensiksi, väitöskirjassa esitellään ryhmäteoriaan perustuva yleinen viitekehys, jolla voidaan generoida sumeuden invariantteja. Konstruoimme uudentyyppisiä operaattoreita, jotka ovat monenlaiselle kuvaustilanteessa ilmenevälle sumeudelle invariantteja. Kyseessä ovat ne rotationaalisesti (ja/tai aksiaalisesti) symmetrisen sumeuden lajit, jotka voidaan mallintaa pistelähteen hajaantumisen funktion (PSF) konvoluutiolla. Toinen tämän väitöskirjan tärkeä tutkimuksellinen anti on esitettyjen sumeuden invarianttien operaattoreiden hyödyntäminen algoritmin kehittelyssä, joka on käytössä translatorisen kuvan rekisteröinnissä. Tällainen algoritmi on tässä tutkimuksessa osoitettu kokeellisesti johtavia kuvien rekisteröintitekniikoita robustimmaksi. Sumeuden invariantin rekisteröinnin algoritmia on käytetty esiprosessointina tässä tutkimuksessa useissa kuvien restaurointimenetelmissä, jotka perustuvat kuvan fuusioon, kuten syväterävyysaluelaajennus ja monikanavainen dekonvoluutio. Kaikki kuvatut tekniikat ovat lopulta uudelleen tulkittu erityistapauksena Wienerin dekonvoluution suodattimesta. Näin ollen tutkimuksen kolmas saavutus on sumeuden invarianttien ja rekisteröintiteknikoiden yleistäminen värikuviin käyttämällä värikuvien kvaternion edustumaa sekä Wienerin kvaternion suodatinta. Havaitsemme kokeellisesti merkittävän parannuksen sekä väritekstuurin tunnistuksessa että sumean kuvan rekisteröinnissä
APA, Harvard, Vancouver, ISO, and other styles
22

Anjos, Giliard Souza dos. "Half-Isomorfismos de loops automórficos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03052018-221550/.

Full text
Abstract:
Loops automórficos, ou A-loops, são loops nos quais todas as aplicações internas são automorfismos. Esta variedade de loops inclui grupos e loops de Moufang comutativos. Loops automórficos diedrais formam uma classe de A-loops construda a partir da duplicação de grupos abelianos finitos, generalizando a construção do grupo diedral. Outra classe de A-loops é a dos loops automórficos de Lie, construda a partir de anéis de Lie, definindo-se uma nova operação entre seus elementos. Um half-isomorfismo é uma bijeção f entre loops L e L\' onde, para quaisquer x e y pertencentes a L, temos que f(xy) pertence ao conjunto . Dizemos que o half-isomorfismo f é não trivial quando f não é um isomorfismo e nem um anti-isomorfismo. Nesta tese descrevemos propriedades de half-isomorfismos de loops, classificamos os half-isomorfismos entre loops automórficos diedrais e obtivemos o grupo de half-automorfismos nesta classe. Para os loops automórficos de Lie de ordem mpar, mostramos que todo half-automorfismo é trivial.
Automorphic loops, or A-loops, are loops in which every inner mapping is an automorphism. This variety of loops includes groups and commutative Moufang loops. Dihedral automorphic loops form a class of A-loops, constructed from the duplication of finite abelian groups, that generalizes the construction of the dihedral group. Another class of A-loops is the Lie automorphic loops, constructed from Lie rings, where a new operation between its elements is defined. A half-isomorphism is a bijection f between loops L and L\' where, for any x and y belong to L, we have that f(xy) belongs to the set {f(x)f(y),f(y)f(x)}. We say that half-isomorphism f is non trivial when f is neither an isomorphism nor an anti-isomorphism. In this thesis, we describe properties of half-isomorphisms of loops, we classify the half-isomorphisms between dihedral automorphic loops and we obtain the group of half-automorphisms in this class. For the Lie automorphic loops of odd order, we show that every half-automorphism is trivial.
APA, Harvard, Vancouver, ISO, and other styles
23

Elias, Ben. "Soergel Diagrammatics for Dihedral Groups." Thesis, 2011. https://doi.org/10.7916/D8C82H96.

Full text
Abstract:
We give a diagrammatic presentation for the category of Soergel bimodules for the dihedral group W, finite or infinite. The (two-colored) Temperley-Lieb category is embedded inside this category as the degree 0 morphisms between color-alternating objects. The indecomposable Soergel bimodules are the images of Jones-Wenzl projectors. When W is finite, the Temperley-Lieb category must be taken at an appropriate root of unity, and the negligible Jones-Wenzl projector yields the Soergel bimodule for the longest element of W.
APA, Harvard, Vancouver, ISO, and other styles
24

LI, TIAN-LAI, and 李天來. "Syntactic near-rings on finite dihedral groups." Thesis, 1989. http://ndltd.ncl.edu.tw/handle/26899243909806265717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

李東益. "On syntactic near-rings of odd dihedral groups." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/59280892402511289047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography