To see the other types of publications on this topic, follow the link: Dihedral groups.

Journal articles on the topic 'Dihedral groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dihedral groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

El-Sanfaz, Mustafa Anis, Nor Haniza Sarmin, and Siti Norziahidayu Amzee Zamri. "Generalized Commuting Graph of Dihedral, Semi-dihedral and Quasi-dihedral Groups." Malaysian Journal of Fundamental and Applied Sciences 17, no. 6 (December 31, 2021): 711–19. http://dx.doi.org/10.11113/mjfas.v17n6.2245.

Full text
Abstract:
Commuting graphs are characterized by vertices that are non-central elements of a group where two vertices are adjacent when they commute. In this paper, the concept of commuting graph is extended by defining the generalized commuting graph. Furthermore, the generalized commuting graph of the dihedral groups, the quasi-dihedral groups and the semi-dihedral groups are presented and discussed. The graph properties including chromatic and clique numbers are also explored.
APA, Harvard, Vancouver, ISO, and other styles
2

Sehrawat, Sudesh, and Manju Pruthi. "Codes over dihedral groups." Journal of Information and Optimization Sciences 39, no. 4 (May 19, 2018): 889–901. http://dx.doi.org/10.1080/02522667.2017.1406628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bowler, Andrew. "Orthomorphisms of dihedral groups." Discrete Mathematics 167-168 (April 1997): 141–44. http://dx.doi.org/10.1016/s0012-365x(96)00222-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guyot, Luc. "Limits of dihedral groups." Geometriae Dedicata 147, no. 1 (December 11, 2009): 159–71. http://dx.doi.org/10.1007/s10711-009-9447-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Isbell, John. "Sequencing certain dihedral groups." Discrete Mathematics 85, no. 3 (December 1990): 323–28. http://dx.doi.org/10.1016/0012-365x(90)90389-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blagojević, Dragan. "Unions of dihedral groups." Semigroup Forum 33, no. 1 (December 1986): 293–98. http://dx.doi.org/10.1007/bf02573205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eliahou, Shalom, and Michel Kervaire. "Sumsets in dihedral groups." European Journal of Combinatorics 27, no. 4 (May 2006): 617–28. http://dx.doi.org/10.1016/j.ejc.2003.09.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Etayo Gordejuela, José Javier, and Ernesto Martínez. "The real genus of cyclic by dihedral and dihedral by dihedral groups." Journal of Algebra 296, no. 1 (February 2006): 145–56. http://dx.doi.org/10.1016/j.jalgebra.2005.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Celentani, Maria Rosaria, Antonella Leone, and Chiara Nicotera. "Infinite locally dihedral groups as automorphism groups." Ricerche di Matematica 63, S1 (August 8, 2014): 69–73. http://dx.doi.org/10.1007/s11587-014-0201-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baumeister, Barbara, Christian Haase, Benjamin Nill, and Andreas Paffenholz. "Polytopes associated to dihedral groups." Ars Mathematica Contemporanea 7, no. 1 (January 8, 2013): 30–38. http://dx.doi.org/10.26493/1855-3974.289.91d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Erdmann, K. "Algebras and Dihedral Defect Groups." Proceedings of the London Mathematical Society s3-54, no. 1 (January 1987): 88–114. http://dx.doi.org/10.1112/plms/s3-54.1.88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Crans, Alissa S., Thomas M. Fiore, and Ramon Satyendra. "Musical Actions of Dihedral Groups." American Mathematical Monthly 116, no. 6 (June 2009): 479–95. http://dx.doi.org/10.1080/00029890.2009.11920965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Paul. "Sequencing the dihedral groups D4k." Discrete Mathematics 175, no. 1-3 (October 1997): 271–76. http://dx.doi.org/10.1016/s0012-365x(96)00108-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ueberberg, Johannes. "Projective planes and dihedral groups." Discrete Mathematics 174, no. 1-3 (September 1997): 337–45. http://dx.doi.org/10.1016/s0012-365x(97)80336-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chebolu, Sunil K., and Keir Lockridge. "Fuchs' problem for dihedral groups." Journal of Pure and Applied Algebra 221, no. 4 (April 2017): 971–82. http://dx.doi.org/10.1016/j.jpaa.2016.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Crans, Alissa S., Thomas M. Fiore, and Ramon Satyendra. "Musical Actions of Dihedral Groups." American Mathematical Monthly 116, no. 6 (June 1, 2009): 479–95. http://dx.doi.org/10.4169/193009709x470399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Płonka, Ernest. "Symmetric Words in Dihedral Groups." Algebra Colloquium 17, spec01 (December 2010): 953–62. http://dx.doi.org/10.1142/s1005386710000891.

Full text
Abstract:
Let G be a group and let w = w(x1, x2,…, xn) be a word in the absolutely free group Fn on free variables x1, x2,…, xn. The set S(n)(G) of all words w such that the equality w(gσ1, gσ2,…, gσn) = w(g1, g2,…, gn) holds for all g1, g2,…, gn∈G and all permutations σ ∈ Sn is a subgroup of Fn, called the subgroup of n-symmetric words for G. In this paper, the groups S(2)(Dp) and S(3)(Dp) for dihedral groups Dp are determined, where p > 3 is a prime. In particular, it turns out that the groups S(3)(Dp) are not abelian.
APA, Harvard, Vancouver, ISO, and other styles
18

Leung, Ka Hin, Siu Lun Ma, and Yan Loi Wong. "Difference sets in dihedral groups." Designs, Codes and Cryptography 1, no. 4 (December 1991): 333–38. http://dx.doi.org/10.1007/bf00124608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lemmermeyer, Franz. "Class groups of dihedral extensions." Mathematische Nachrichten 278, no. 6 (May 2005): 679–91. http://dx.doi.org/10.1002/mana.200310263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Płonka, Ernest. "Weak automorphisms of dihedral groups." Algebra universalis 64, no. 1-2 (October 2010): 153–60. http://dx.doi.org/10.1007/s00012-010-0096-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

McCollum, Joseph. "Random Walks on Dihedral Groups." Journal of Theoretical Probability 24, no. 2 (September 10, 2010): 397–408. http://dx.doi.org/10.1007/s10959-010-0307-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kuhn, Heinrich. "A dihedral calculus for groups." Archiv der Mathematik 51, no. 2 (August 1988): 111–17. http://dx.doi.org/10.1007/bf01206467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Berenstein, Arkady, and Michael Kapovich. "Affine buildings for dihedral groups." Geometriae Dedicata 156, no. 1 (April 19, 2011): 171–207. http://dx.doi.org/10.1007/s10711-011-9598-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Achar, P. N., and A. M. Aubert. "Springer Correspondences for Dihedral Groups." Transformation Groups 13, no. 1 (March 2008): 1–24. http://dx.doi.org/10.1007/s00031-008-9004-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Evans, J. D. P. "Syzygy modules for dihedral groups." Communications in Algebra 49, no. 6 (February 15, 2021): 2606–22. http://dx.doi.org/10.1080/00927872.2021.1879106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Izquierdo, M. "On Klein Surfaces and Dihedral Groups." MATHEMATICA SCANDINAVICA 76 (December 1, 1995): 221. http://dx.doi.org/10.7146/math.scand.a-12538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ecker, Jürgen. "Affine Completeness of Generalised Dihedral Groups." Canadian Mathematical Bulletin 49, no. 3 (September 1, 2006): 347–57. http://dx.doi.org/10.4153/cmb-2006-035-8.

Full text
Abstract:
AbstractIn this paper we study affine completeness of generalised dihedral groups. We give a formula for the number of unary compatible functions on these groups, and we characterise for every k ∈ N the k-affine complete generalised dihedral groups. We find that the direct product of a 1-affine complete group with itself need not be 1-affine complete. Finally, we give an example of a nonabelian solvable affine complete group. For nilpotent groups we find a strong necessary condition for 2-affine completeness.
APA, Harvard, Vancouver, ISO, and other styles
28

Hubbard, David. "Dihedral side extensions and class groups." Journal of Number Theory 128, no. 4 (April 2008): 731–37. http://dx.doi.org/10.1016/j.jnt.2007.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, Jin-Quan, Peng-Dong Fan, Luke McAven, and Philip Butler. "Algebraic solutions for all dihedral groups." Journal of Mathematical Physics 41, no. 12 (December 2000): 8196–222. http://dx.doi.org/10.1063/1.1286513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hidalgo, Rubén A. "Dihedral groups are of schottky type." Proyecciones (Antofagasta) 18, no. 1 (July 1999): 23–48. http://dx.doi.org/10.22199/s07160917.1999.0001.00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lu, Lu, Qiongxiang Huang, and Xueyi Huang. "Integral Cayley graphs over dihedral groups." Journal of Algebraic Combinatorics 47, no. 4 (August 31, 2017): 585–601. http://dx.doi.org/10.1007/s10801-017-0787-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Laubenbacher, Reinhard C., and Bruce A. Magurn. "Sk2 and K3 Of Dihedral Groups." Canadian Journal of Mathematics 44, no. 3 (June 1, 1992): 591–623. http://dx.doi.org/10.4153/cjm-1992-037-x.

Full text
Abstract:
AbstractNew computations of birelative K2 groups and recent results on K3 of rings of algebraic integers are combined in generalized Mayer-Vietoris sequences for algebraic k-theory. Upper and lower bounds for SK2(ℤ G) and lower bounds for K3(ℤ G) are deduced for G a dihedral group of square-free order, and for some other closely related groups G.
APA, Harvard, Vancouver, ISO, and other styles
33

Kakkar, Vipul, and Gopal Singh Rawat. "Commuting graphs of generalized dihedral groups." Discrete Mathematics, Algorithms and Applications 11, no. 02 (April 2019): 1950024. http://dx.doi.org/10.1142/s1793830919500241.

Full text
Abstract:
For a group [Formula: see text] and a subset [Formula: see text] of [Formula: see text], the commuting graph of [Formula: see text], denoted by [Formula: see text] is the graph whose vertex set is [Formula: see text] and any two vertices [Formula: see text] and [Formula: see text] in [Formula: see text] are adjacent if and only if they commute in [Formula: see text]. In this paper, certain properties of the commuting graph of generalized dihedral groups have been studied.
APA, Harvard, Vancouver, ISO, and other styles
34

DeWolf, Darien, Charles Edmunds, and Christopher Levy. "On commutation semigroups of dihedral groups." Semigroup Forum 87, no. 2 (April 10, 2013): 467–88. http://dx.doi.org/10.1007/s00233-013-9483-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kovács, István, and Young Soo Kwon. "Regular Cayley maps for dihedral groups." Journal of Combinatorial Theory, Series B 148 (May 2021): 84–124. http://dx.doi.org/10.1016/j.jctb.2020.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xu, Yuan. "Intertwining Operators Associated with Dihedral Groups." Constructive Approximation 52, no. 3 (November 15, 2019): 395–422. http://dx.doi.org/10.1007/s00365-019-09487-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Zheng Xing, and Yuan Lin Li. "Coleman automorphisms of generalized dihedral groups." Acta Mathematica Sinica, English Series 32, no. 2 (January 15, 2016): 251–57. http://dx.doi.org/10.1007/s10114-016-5228-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Deleaval, L., N. Demni, and H. Youssfi. "Dunkl kernel associated with dihedral groups." Journal of Mathematical Analysis and Applications 432, no. 2 (December 2015): 928–44. http://dx.doi.org/10.1016/j.jmaa.2015.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

B�lek, Martin, Ale? Dr�pal, and Natalia Zhukavets. "The Neighbourhood of Dihedral 2-Groups." Acta Applicandae Mathematicae 85, no. 1-3 (January 2005): 25–33. http://dx.doi.org/10.1007/s10440-004-5582-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, Huey Voon, and Chang Seng Sin. "On complete decompositions of dihedral groups." ITM Web of Conferences 36 (2021): 03001. http://dx.doi.org/10.1051/itmconf/20213603001.

Full text
Abstract:
Let G be a finite non-abelian group and B1, …, Bt be nonempty subsets of G for integer t ≥ 2. Suppose that B1, …, Bt are pairwise disjoint, then (B1, …, Bt) is called a complete decomposition of G of order t if the subset product Bi1 … Bit = {bi1 … bit | bij ∈ Bij, j = 1,2, …,t} coincides with G, where {Bi1 … Bit} = {B1, …, Bt} and the Bij are all distinct. Let D2n = ‹r,s| rn = s2 = 1, rs =srn-1› be the dihedral group of order 2n for integer n ≥3. In this paper, we shall give the constructions of the complete decompositions of D2n of order t, where 2 ≤ t ≤ n.
APA, Harvard, Vancouver, ISO, and other styles
41

Umar, Abdullahi, and Bashir Ali. "Dihedral Groups as Epimorphic Images of Some Fibonacci Groups." Sultan Qaboos University Journal for Science [SQUJS] 18 (December 1, 2013): 54. http://dx.doi.org/10.24200/squjs.vol18iss0pp54-59.

Full text
Abstract:
The Fibonacci groups are defined by the presentation where , and all subscripts are assumed to be reduced modulo . In this paper we give an alternative proof that for , , and are all infinite by establishing a morphism (or group homomorphism) onto the dihedral group for all .
APA, Harvard, Vancouver, ISO, and other styles
42

Muranov, Yu V. "Tate cohomologies and Browder-Livesay groups of dihedral groups." Mathematical Notes 54, no. 2 (August 1993): 798–805. http://dx.doi.org/10.1007/bf01212844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Brown, Kenneth A. "Class groups and automorphism groups of group rings." Glasgow Mathematical Journal 28, no. 1 (January 1986): 79–86. http://dx.doi.org/10.1017/s0017089500006376.

Full text
Abstract:
This paper is a sequel to [2]. A polycyclic-by-finite group G was there called dihedral free if G contains no subgroup isomorphic to 〈b, a:ba = b-1 a2 = 1〉 whose normalizer has finite index in G. It was shown in [2, Theorem F] that, if R is a commutative Noetherian domain, the group ring RG is a prime Noetherian maximal order if and only if R is integrally closed, G is dihedral free, and G has no non-trivial finite normal subgroups. Throughout, R and G will be assumed to satisfy these hypotheses. The main aim of the paper is to study the class group of the maximal order RG.
APA, Harvard, Vancouver, ISO, and other styles
44

Niemenmaa, Markku. "On loops which have dihedral 2-groups as inner mapping groups." Bulletin of the Australian Mathematical Society 52, no. 1 (August 1995): 153–60. http://dx.doi.org/10.1017/s0004972700014520.

Full text
Abstract:
In this paper we consider the situation that a group G has a subgroup H which is a dihedral 2-group and with connected transversals A and B in G. We show that G is then solvable and moreover, if G is generated by the set A ∪ B, then H is subnormal in G. We apply these results to loop theory and it follows that if the inner mapping group of a loop Q is a dihedral 2-group then Q is centrally nilpotent.
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Na-Er, Kan Hu, Kai Yuan, and Jun-Yang Zhang. "Smooth skew morphisms of the dihedral groups." Ars Mathematica Contemporanea 16, no. 2 (March 28, 2019): 527–47. http://dx.doi.org/10.26493/1855-3974.1475.3d3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Poimenidou, Eirini, and Amy Cottrell. "Total Characters of Dihedral Groups and Sharpness." Missouri Journal of Mathematical Sciences 12, no. 1 (February 2000): 12–25. http://dx.doi.org/10.35834/2000/1201012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cho, Eung. "s-Smith equivalent representations of dihedral groups." Pacific Journal of Mathematics 135, no. 1 (November 1, 1988): 17–28. http://dx.doi.org/10.2140/pjm.1988.135.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Staneková, L'ubica. "t-Balanced Cayley maps of dihedral groups." Electronic Notes in Discrete Mathematics 28 (March 2007): 301–7. http://dx.doi.org/10.1016/j.endm.2007.01.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bleher, Frauke M. "Universal deformation rings and dihedral defect groups." Transactions of the American Mathematical Society 361, no. 07 (July 1, 2009): 3661. http://dx.doi.org/10.1090/s0002-9947-09-04543-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kohl, Timothy. "Multiple Holomorphs of Dihedral and Quaternionic Groups." Communications in Algebra 43, no. 10 (July 6, 2015): 4290–304. http://dx.doi.org/10.1080/00927872.2014.943842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography