Academic literature on the topic 'Diluted magnetic semiconductor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diluted magnetic semiconductor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diluted magnetic semiconductor"
Lashkarev, G. V. "Diluted magnetic layered semiconductor InSe:Mn with high Curie temperature." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 3 (September 25, 2011): 263–68. http://dx.doi.org/10.15407/spqeo14.03.263.
Full textCHOI, HEON-JIN, HAN-KYU SEONG, and UNGKIL KIM. "DILUTED MAGNETIC SEMICONDUCTOR NANOWIRES." Nano 03, no. 01 (February 2008): 1–19. http://dx.doi.org/10.1142/s1793292008000848.
Full textGunshor, R. L., N. Otsuka, M. Yamanishi, L. A. Kolodziejski, T. C. Bonsett, R. B. Bylsma, S. Datta, W. M. Becker, and J. K. Furdyna. "Diluted magnetic semiconductor superlattices." Journal of Crystal Growth 72, no. 1-2 (July 1985): 294–98. http://dx.doi.org/10.1016/0022-0248(85)90161-7.
Full textSamarth, N., and J. K. Furdyna. "Diluted Magnetic Semiconductors." MRS Bulletin 13, no. 6 (June 1988): 32–36. http://dx.doi.org/10.1557/s0883769400065477.
Full textKacman, P. "Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures." Semiconductor Science and Technology 16, no. 4 (March 2, 2001): R25—R39. http://dx.doi.org/10.1088/0268-1242/16/4/201.
Full textWang, Zewen, and Wanqi Jie. "Magnetic properties of diluted magnetic semiconductor Hg0.89Mn0.11Te." Journal of Wuhan University of Technology-Mater. Sci. Ed. 30, no. 6 (December 2015): 1130–33. http://dx.doi.org/10.1007/s11595-015-1283-6.
Full textMIURA, N., Y. H. MATSUDA, and T. IKAIDA. "MEGAGAUSS CYCLOTRON RESONANCE IN SEMICONDUCTOR NANOSTRUCTURES AND DILUTED MAGNETIC SEMICONDUCTORS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3399–404. http://dx.doi.org/10.1142/s0217979202014565.
Full textPortavoce, A., S. Bertaina, O. Abbes, L. Chow, and V. Le Thanh. "About Ge(Mn) diluted magnetic semiconductor." Materials Letters 119 (March 2014): 68–70. http://dx.doi.org/10.1016/j.matlet.2014.01.021.
Full textSun, Shih-Jye, and Hsiu-Hau Lin. "Diluted magnetic semiconductor at finite temperature." Physics Letters A 327, no. 1 (June 2004): 73–77. http://dx.doi.org/10.1016/j.physleta.2004.04.026.
Full textKönig, Jürgen, Hsiu-Hau Lin, and Allan H. MacDonald. "Theory of Diluted Magnetic Semiconductor Ferromagnetism." Physical Review Letters 84, no. 24 (June 12, 2000): 5628–31. http://dx.doi.org/10.1103/physrevlett.84.5628.
Full textDissertations / Theses on the topic "Diluted magnetic semiconductor"
Radovanovic, Pavle V. "Synthesis, spectroscopy, and magnetism of diluted magnetic semiconductor nanocrystals /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8494.
Full textKneip, Martin K. "Magnetization dynamics in diluted magnetic semiconductor heterostructures." kostenfrei, 2008. http://hdl.handle.net/2003/25822.
Full textPeleckis, Germanas. "Studies on diluted oxide magnetic semiconductors for spin electronic applications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.145447/index.html.
Full textNorberg, Nicholas S. "Magnetic nanocrystals : synthesis and properties of diluted magnetic semiconductor quantum dots /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8625.
Full textAnkiewicz, Amélia Olga Gonçalves. "Properties of self-assembled diluted magnetic semiconductor nanostructures." Doctoral thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2681.
Full textEste trabalho centra-se na investigação da possibilidade de se conseguir um semicondutor magnético diluído (SMD) baseado em ZnO. Foi levado a cabo um estudo detalhado das propriedades magnéticas e estruturais de estruturas de ZnO, nomeadamente nanofios (NFs), nanocristais (NCs) e filmes finos, dopadas com metais de transição (MTs). Foram usadas várias técnicas experimentais para caracterizar estas estruturas, designadamente difracção de raios-X, microscopia electrónica de varrimento, ressonância magnética, SQUID, e medidas de transporte. Foram incorporados substitucionalmente nos sítios do Zn iões de Mn2+ e Co2+ em ambos os NFs e NCs de ZnO. Revelou-se para ambos os iões dopantes, que a incorporação é heterogénea, uma vez que parte do sinal de ressonância paramagnética electrónica (RPE) vem de iões de MTs em ambientes distorcidos ou enriquecidos com MTs. A partir das intensidades relativas dos espectros de RPE e de modificações da superfície, demonstra-se ainda que os NCs exibem uma estrutura core-shell. Os resultados, evidenciam que, com o aumento da concentração de MTs, a dimensão dos NCs diminui e aumentam as distorções da rede. Finalmente, no caso dos NCs dopados com Mn, obteve-se o resultado singular de que a espessura da shell é da ordem de 0.3 nm e de que existe uma acumulação de Mn na mesma. Com o objectivo de esclarecer o papel dos portadores de carga na medição das interacções ferromagnéticas, foram co-dopados filmes de ZnO com Mn e Al ou com Co e Al. Os filmes dopados com Mn, revelaram-se simplesmente paramagnéticos, com os iões de Mn substitucionais nos sítios do Zn. Por outro lado, os filmes dopados com Co exibem ferromagnetismo fraco não intrínseco, provavelmente devido a decomposição spinodal. Foram ainda efectuados estudos comparativos com filmes de ligas de Zn1-xFexO. Como era de esperar, detectaram-se segundas fases de espinela e de óxido de ferro nestas ligas; todas as amostras exibiam curvas de histerese a 300 K. Estes resultados suportam a hipótese de que as segundas fases são responsáveis pelo comportamento magnético observado em muitos sistemas baseados em ZnO. Não se observou nenhuma evidência de ferromagnetismo mediado por portadores de carga. As experiências mostram que a análise de RPE permite demonstrar directamente se e onde estão incorporados os iões de MTs e evidenciam a importância dos efeitos de superfície para dimensões menores que ~15 nm, para as quais se formam estruturas core-shell. As investigações realizadas no âmbito desta tese demonstram que nenhuma das amostras de ZnO estudadas exibiram propriedades de um SMD intrínseco e que, no futuro, são necessários estudos teóricos e experimentais detalhados das interacções de troca entre os iões de MTs e os átomos do ZnO para determinar a origem das propriedades magnéticas observadas.
This work focuses on the study of the possibility of achieving an intrinsic diluted magnetic semiconductor (DMS) based on ZnO. Detailed investigations of the structural and magnetic properties of transition metal (TM) doped ZnO structures, namely nanowires (NWs), nanocrystals (NCs), and thin films, were carried out. Various experimental techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetic resonance, SQUID, and transport measurements were employed to structurally and magnetically characterize these samples. For both the ZnO NWs and NCs, Mn and Co ions were successfully incorporated as substitutional Mn2+ or Co2+, respectively, on Zn sites. For both types of doping, the TM incorporation was heterogeneous, since part of the electron paramagnetic resonance (EPR) spectrum stemmed from TM ions in distorted or TM enriched environments. Furthermore, in the case of the NCs, the relative intensities of the EPR spectra and surface modifications showed that the NCs exhibit a core-shell structure. Moreover, the results evidence decreasing NC size and increasing lattice distortions for increasing TM content. Finally, in the case of the Mn doped NCs, we were able to obtain the unique result that the shell thickness is very small, in the order of 0.3 nm, and that there is an accumulation of the Mn ions in the shell. To clarify the role of charge carriers in mediating ferromagnetic interactions, Mn, Al and Co, Al co-doped ZnO films were investigated. The Mn doped ZnO samples were clearly paramagnetic, the Mn ions being substitutional on Zn sites. On the other hand, the Co doped samples exhibited weak ferromagnetic order, which we believe to most probably arise from spinodal decomposition. Additionally, comparative investigations of Fe alloyed ZnO films were performed. As expected, second phases of spinel and iron oxide were found, and the samples exhibited ferromagnetic hysteresis loops at 300 K. These results support the indication that secondary phases are accountable for the magnetic behaviour detected in many ZnO systems. No evidence of carrier mediated ferromagnetism was observed. The experiments show that the EPR analysis allows us to directly demonstrate whether and where the TM ions are incorporated and evidence the importance of the surface effects at material dimensions below ~15 nm, for which coreshell structures are formed. The research carried out in the framework of this thesis demonstrates that for all studied samples, ZnO did not exhibit the behaviour of an intrinsic DMS, and in the future very detailed element specific investigations, both experimental and theoretical, of the exchange interactions of the transition metal ions with the ZnO host are necessary to assert the nature of the magnetic properties.
Kneip, Martin [Verfasser]. "Magnetization Dynamics in Diluted Magnetic Semiconductor Heterostructures / Martin Kneip." München : GRIN Verlag, 2009. http://d-nb.info/1187730718/34.
Full textDagnelund, Daniel. "Magneto-optical studies of dilute nitrides and II-VI diluted magnetic semiconductor quantum structures." Doctoral thesis, Linköpings universitet, Funktionella elektroniska material, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54695.
Full textGURUNG, TAK BAHADUR. "OPTICAL IMAGING OF EXCITON MAGNETIC POLARONS IN DILUTED MAGNETIC SEMICONDUCTOR QUANTUM DOTS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155658535.
Full textEnaya, Hani. "Nonvolatile Spin Memory based on Diluted Magnetic Semiconductor and Hybrid Semiconductor Ferromagnetic Nanostructures." NCSU, 2008. http://www.lib.ncsu.edu/theses/available/etd-05222008-214407/.
Full textStirner, Thomas. "Theory of excitons and magnetic polarons in diluted magnetic semiconductor quantum well structures." Thesis, University of Hull, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262406.
Full textBooks on the topic "Diluted magnetic semiconductor"
Strutz, Thomas. High magnetic field electron spin-lattice relaxation in a diluted magnetic semiconductor: CdMnTe. Konstanz: Hartung-Gorre Verlag, 1991.
Find full textAverous, Michel. Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Boston, MA: Springer US, 1991.
Find full textAverous, Michel, and Minko Balkanski, eds. Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2.
Full textInternational School of Materials Science and Technology (1990 Erice, Italy). Semimagnetic semiconductors and diluted magnetic semiconductors. New York: Plenum Press, 1991.
Find full textKrevet, Rasmus. FIR-laser magnetooptics on Cr-based diluted magnetic semiconductors. Göttingen: Cuvillier Verlag, 1994.
Find full textJacek, Kossut, and SpringerLink (Online service), eds. Introduction to the Physics of Diluted Magnetic Semiconductors. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textGaj, Jan A., and Jacek Kossut, eds. Introduction to the Physics of Diluted Magnetic Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15856-8.
Full textThe physics of dilute magnetic alloys. Cambridge: Cambridge University Press, 2012.
Find full textHausenblas, Monika. Investigation of low energy excitations in novel semiconducting systems by means of far infrared magnetospectroscopy. Konstanz: Hartung-Gorre Verlag, 1992.
Find full textBook chapters on the topic "Diluted magnetic semiconductor"
Voos, Michel. "Semimagnetic Semiconductor Superlattices." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors, 237–51. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_10.
Full textRamdas, A. K. "Magneto-optic Phenomena in Diluted Magnetic Semiconductors." In High Magnetic Fields in Semiconductor Physics II, 464–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_71.
Full textBéjar, Manuel, David Sánchez, Gloria Platero, and A. H. Macdonald. "Spin Transport in Diluted Magnetic Semiconductor Superlattices." In Recent Trends in Theory of Physical Phenomena in High Magnetic Fields, 167–81. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0221-9_14.
Full textChang, L. L., D. D. Awschalom, M. R. Freeman, and L. Vina. "Optical and Magnetic Properties of Diluted Magnetic Semiconductor Heterostructures." In Condensed Systems of Low Dimensionality, 165–79. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-1348-9_13.
Full textKavokin, Kirill. "Coherent Spin Dynamics in Diluted-Magnetic Quantum Wells." In Optical Properties of Semiconductor Nanostructures, 255–68. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_27.
Full textFurdyna, J. K., S. Lee, M. Dobrowolska, T. Wojtowicz, and X. Liu. "Band-Offset Engineering in Magnetic/Non-Magnetic Semiconductor Quantum Structures." In Introduction to the Physics of Diluted Magnetic Semiconductors, 103–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15856-8_4.
Full textKutrowski, M., T. Wojtowicz, S. Kret, G. Karczewski, J. Kossut, R. Fiederling, B. König, et al. "Magnetooptical Properties of Graded Quantum Well Structures Made of Diluted Magnetic Semiconductors." In Optical Properties of Semiconductor Nanostructures, 237–46. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_25.
Full textHomonnay, Z., K. Nomura, E. Kuzmann, A. Vértes, Y. Hirose, and T. Hasegawa. "57Co-emission Mössbauer study on diluted magnetic semiconductor TiO2 films." In ICAME 2007, 483–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78697-9_63.
Full textMurayama, A., and Y. Oka. "Optical Properties and Spin Dynamics of Diluted Magnetic Semiconductor Nanostructures." In Optical Properties of Condensed Matter and Applications, 393–415. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470021942.ch16.
Full textStirner, T., and W. E. Hagston. "Dynamical aspects of exciton magnetic polaron formation in diluted magnetic semiconductor quantum wells." In Springer Proceedings in Physics, 270–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_123.
Full textConference papers on the topic "Diluted magnetic semiconductor"
Grubin, H. L. "Diluted magnetic semiconductor superlattices." In Defense and Security Symposium, edited by Dwight L. Woolard, R. Jennifer Hwu, Mark J. Rosker, and James O. Jensen. SPIE, 2006. http://dx.doi.org/10.1117/12.665364.
Full textBarmawi, M. "Spin injection using Diluted Magnetic Semiconductor." In 2009 International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). IEEE, 2009. http://dx.doi.org/10.1109/icici-bme.2009.5417237.
Full textLi, M. K., S. J. Lee, S. U. Yuldashev, G. Ihm, T. W. Kang, Jisoon Ihm, and Hyeonsik Cheong. "Phase Transition of Diluted Magnetic Semiconductor." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666578.
Full textMIURA, N., Y. H. MATSUDA, and T. IKAIDA. "MEGAGAUSS CYCLOTRON RESONANCE IN SEMICONDUCTOR NANOSTRUCTURES AND DILUTED MAGNETIC SEMICONDUCTORS." In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0137.
Full textRani, Anita, Kulwinder Kaur, and Ranjan Kumar. "Cd0.9375Mn0.0625S diluted magnetic semiconductor: A DFT study." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4929249.
Full textGrubin, H. L., and Dwight L. Woolard. "Multilayered diluted magnetic semiconductor structures and 2DEG." In Optics East 2005, edited by James O. Jensen and Jean-Marc Thériault. SPIE, 2005. http://dx.doi.org/10.1117/12.633578.
Full textZou, Jin, Yong Wang, Faxian Xiu, Zuoming Zhao, and Kang L. Wang. "Structural characteristics of GeMn diluted magnetic semiconductor nanostructures." In 2012 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD). IEEE, 2012. http://dx.doi.org/10.1109/commad.2012.6472336.
Full textOka, Yasuo, Kazumasa Takabayashi, Nobuhiro Takahashi, Eiji Shirado, Jinxi Shen, and Izuru Souma. "Magneto-optical properties of diluted magnetic semiconductor nanostructures." In 4th International Conference on Thin Film Physics and Applications, edited by Junhao Chu, Pulin Liu, and Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408299.
Full textPruthi, Navneet K., and Anita Rani. "Ab-initio study of diluted magnetic semiconductor Cd0.9375Mn0.0625Se." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113297.
Full textMiyagawa, Hayato, Nakaba Funaki, Shyun Koshiba, Naoshi Takahashi, Masaichiro Mizumaki, and Motohiro Suzuki. "Magnetic moment in diluted magnetic semiconductor GaGdAs measured by HX-MCD." In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528641.
Full textReports on the topic "Diluted magnetic semiconductor"
El-Masry, Nadia A., and S. M. Bedair. Room Temperature Devices of Dilute Magnetic Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada432896.
Full textUllrich, Carsten A. Charge and Spin Transport in Dilute Magnetic Semiconductors. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/960296.
Full textZhang, Weidong, and Dwight Woolard. Magneto-Transpots in Interband Resonant Tunneling Diodes (I-RTDs) and Dilute Magnetic Semiconductor (DMS) I-RTDs. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada577381.
Full textLawniczak-Jablonska, K., [Institute of Physics, Warsaw (Poland)], J. J. Jia, and J. H. Underwood. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603587.
Full text