To see the other types of publications on this topic, follow the link: Diluted magnetic semiconductor.

Journal articles on the topic 'Diluted magnetic semiconductor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diluted magnetic semiconductor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lashkarev, G. V. "Diluted magnetic layered semiconductor InSe:Mn with high Curie temperature." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 3 (September 25, 2011): 263–68. http://dx.doi.org/10.15407/spqeo14.03.263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CHOI, HEON-JIN, HAN-KYU SEONG, and UNGKIL KIM. "DILUTED MAGNETIC SEMICONDUCTOR NANOWIRES." Nano 03, no. 01 (February 2008): 1–19. http://dx.doi.org/10.1142/s1793292008000848.

Full text
Abstract:
An idea for simultaneously manipulating spin and charge in a single semiconductor medium has resulted in the development of diluted magnetic semiconductors (DMSs), which exhibits surprisingly room temperature ferromagnetic signatures despite having controversial ferromagnetic origin. However, achievement of truly room temperature ferromagnetism by carrier mediation is still the subject of intense research to develop the practical spin-based devices. Nanowires with one-dimensional nanostructure, which offers thermodynamically stable features and typically single crystalline and defect free, have a number of advantages over thin films with respect to studying ferromagnetism in DMSs. This review focuses primarily on our works on GaN -based DMS nanowires, i.e., Mn -doped GaN , Mn -doped AlGaN and Cu -doped GaN nanowires. These DMS nanowires have room temperature ferromagnetism by the local magnetic moment of doping elements that are in a divalent state and in tetrahedral coordination, thus substituting Ga in the wurtzite-type network structure of host materials. Importantly, our evidences indicate that the magnetism is originated from the ferromagnetic interaction driven by the carrier. These outcomes suggest that nanowires are ideal building blocks to address the magnetism in DMS due to their thermodynamic stability, single crystallinity, free of defects and free standing nature from substrate. Nanowires themselves are ideal building blocks for nanodevices and, thus, it would also be helpful in developing DMS-based spin devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Gunshor, R. L., N. Otsuka, M. Yamanishi, L. A. Kolodziejski, T. C. Bonsett, R. B. Bylsma, S. Datta, W. M. Becker, and J. K. Furdyna. "Diluted magnetic semiconductor superlattices." Journal of Crystal Growth 72, no. 1-2 (July 1985): 294–98. http://dx.doi.org/10.1016/0022-0248(85)90161-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Samarth, N., and J. K. Furdyna. "Diluted Magnetic Semiconductors." MRS Bulletin 13, no. 6 (June 1988): 32–36. http://dx.doi.org/10.1557/s0883769400065477.

Full text
Abstract:
Diluted magnetic semiconductors (DMS) are semiconducting alloys whose lattice is partly made of substitutional magnetic ions. The most extensively studied materials of this type are the alloys, in which a fraction of the group II sublattice is replaced at random by Mn. The entire family of ternary alloys, along with their crystal structure and corresponding ranges of composition, is listed in Table I. Over the past decade, these alloys have attracted a growing scientific interest because of new fundamental effects in semiconductor physics and magnetism in these materials and because of their potential applications in optical nonreciprocal devices, solid state lasers, flat panel displays, infrared detectors, and other optoelectronic applications.The increasing popularity of this field can be attributed to the broad variety of fascinating problems offered by the study of the alloys. To begin with, there is an interest in the semiconducting properties per se — for instance, the understanding of the electronic band structure and its variation with alloy composition. As in other ternary alloys, the band parameters and the lattice constant can be “tuned” by controlling the alloy composition, opening the door to band-gap engineering and lattice matching in the context of epitaxially grown superlattices and het-erostructures. The random distribution of Mn atoms with a well-characterized antiferromagnetic Mn-Mn exchange interaction provides an ideal system for studying fundamental questions in disordered magnetism. The sp-d exchange interaction between the spins of band electrons and the localized moments of the Mn atoms constitutes a unique interplay between semiconductor physics and magnetism. This leads to unusual magneto-transport and magneto-optic phenomena such as an extremely large Faraday rotation, giant negative magneto-resistance, and a magnetic-field-induced metal-insulator transition. Finally, the potential technological importance of DMS is also being recognized. For example, the large Faraday rotation holds promise of DMS applications as optical isolators, modulators, and circulators. We will briefly introduce some of the exciting research problems offered by the study of DMS. More detailed information is available in several extensive reviews and compendia.
APA, Harvard, Vancouver, ISO, and other styles
5

Kacman, P. "Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures." Semiconductor Science and Technology 16, no. 4 (March 2, 2001): R25—R39. http://dx.doi.org/10.1088/0268-1242/16/4/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zewen, and Wanqi Jie. "Magnetic properties of diluted magnetic semiconductor Hg0.89Mn0.11Te." Journal of Wuhan University of Technology-Mater. Sci. Ed. 30, no. 6 (December 2015): 1130–33. http://dx.doi.org/10.1007/s11595-015-1283-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MIURA, N., Y. H. MATSUDA, and T. IKAIDA. "MEGAGAUSS CYCLOTRON RESONANCE IN SEMICONDUCTOR NANOSTRUCTURES AND DILUTED MAGNETIC SEMICONDUCTORS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3399–404. http://dx.doi.org/10.1142/s0217979202014565.

Full text
Abstract:
We report the latest results of cyclotron resonance experiments on semiconductor nanostructures and diluted magnetic semiconductors (DMS) in very high magnetic fields up to 600 T produced by magnetic flux compression and the single turn coiled technique. Many new features were observed in the very high field range, such as characteristic behavior of low dimensional electrons, carrier dynamics or electron-electron interaction effects in quantum wells and quantum dot samples. In PbSe/PdEuTe quantum dots, which were regularly arranged to form an fcc superlattice, we observed an absorption peak with a splitting and a wavelength dependence of the absorption intensity. In DMS, such as CdMnTe and InMnAs, change of the carrier effective mass with Mn doping was studied in detail. We found anomalous mass increase with doping of magnetic ions. The amount of the observed mass increase cannot be explained by the k·p theory and suggests the importance of d-s or d-p hybridization.
APA, Harvard, Vancouver, ISO, and other styles
8

Portavoce, A., S. Bertaina, O. Abbes, L. Chow, and V. Le Thanh. "About Ge(Mn) diluted magnetic semiconductor." Materials Letters 119 (March 2014): 68–70. http://dx.doi.org/10.1016/j.matlet.2014.01.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Shih-Jye, and Hsiu-Hau Lin. "Diluted magnetic semiconductor at finite temperature." Physics Letters A 327, no. 1 (June 2004): 73–77. http://dx.doi.org/10.1016/j.physleta.2004.04.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

König, Jürgen, Hsiu-Hau Lin, and Allan H. MacDonald. "Theory of Diluted Magnetic Semiconductor Ferromagnetism." Physical Review Letters 84, no. 24 (June 12, 2000): 5628–31. http://dx.doi.org/10.1103/physrevlett.84.5628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Datta, S., J. K. Furdyna, and R. L. Gunshor. "Diluted magnetic semiconductor superlattices and heterostructures." Superlattices and Microstructures 1, no. 4 (January 1985): 327–34. http://dx.doi.org/10.1016/0749-6036(85)90094-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Munekata, H., T. Penney, and L. L. Chang. "Diluted magnetic III–V semiconductor structures." Surface Science 267, no. 1-3 (January 1992): 342–48. http://dx.doi.org/10.1016/0039-6028(92)91151-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Amthong, A. "A magnetic quantum dot in a diluted magnetic semiconductor/semiconductor heterostructure." Superlattices and Microstructures 80 (April 2015): 72–79. http://dx.doi.org/10.1016/j.spmi.2014.12.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gu, Jian-Jun, Li-Hu Liu, Yun-Kai Qi, Qin Xu, Hai-Feng Zhang, and Hui-Yuan Sun. "Magnetic characterization of diluted magnetic semiconductor thin films." Journal of Applied Physics 109, no. 2 (January 15, 2011): 023902. http://dx.doi.org/10.1063/1.3532043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lee, Byounghak, T. Jungwirth, and A. H. MacDonald. "Ferromagnetism in diluted magnetic semiconductor heterojunction systems." Semiconductor Science and Technology 17, no. 4 (March 21, 2002): 393–403. http://dx.doi.org/10.1088/0268-1242/17/4/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kohl, M., M. R. Freeman, J. M. Hong, and D. D. Awschalom. "Faraday spectroscopy in diluted-magnetic-semiconductor superlattices." Physical Review B 43, no. 3 (January 15, 1991): 2431–34. http://dx.doi.org/10.1103/physrevb.43.2431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, P. P., H. Makino, and T. Yao. "InMnN: a nitride-based diluted magnetic semiconductor." Solid State Communications 130, no. 1-2 (April 2004): 25–29. http://dx.doi.org/10.1016/j.ssc.2004.01.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mac, W., Nguyen The Khoi, A. Twardowski, J. A. Gaj, and M. Demianiuk. "Ferromagneticp-dexchange inZn1−xCrxSe diluted magnetic semiconductor." Physical Review Letters 71, no. 14 (October 4, 1993): 2327–30. http://dx.doi.org/10.1103/physrevlett.71.2327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kyrychenko, F. V., and J. Kossut. "Excitons in diluted magnetic semiconductor quantum wires." Physica E: Low-dimensional Systems and Nanostructures 10, no. 1-3 (May 2001): 378–82. http://dx.doi.org/10.1016/s1386-9477(01)00120-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Oka, Yasuo. "Excitonic effects in diluted magnetic semiconductor nanostructures." Physics of the Solid State 40, no. 5 (May 1998): 778–80. http://dx.doi.org/10.1134/1.1130393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dakhlaoui, H., and S. Jaziri. "Theoretical study of diluted magnetic semiconductor trilayers." physica status solidi (c) 1, no. 7 (May 2004): 1971–75. http://dx.doi.org/10.1002/pssc.200304412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Choi, H. J., H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall, and P. Yang. "Single-Crystalline Diluted Magnetic Semiconductor GaN:Mn Nanowires." Advanced Materials 17, no. 11 (June 6, 2005): 1351–56. http://dx.doi.org/10.1002/adma.200401706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

MUSTAQIMA, Millaty, and Chunli LIU. "ZnO-based nanostructures for diluted magnetic semiconductor." TURKISH JOURNAL OF PHYSICS 38 (2014): 429–41. http://dx.doi.org/10.3906/fiz-1405-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kanazawa, I. "Metal–Insulator Transition in Diluted Magnetic Semiconductor." Journal of the Physical Society of Japan 72, Suppl.A (January 3, 2003): 211–12. http://dx.doi.org/10.1143/jpsjs.72sa.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Majid, Abdul, Rehana Sharif, J. J. Zhu, and Akbar Ali. "Mn–AlInN: a new diluted magnetic semiconductor." Applied Physics A 96, no. 4 (February 18, 2009): 979–84. http://dx.doi.org/10.1007/s00339-009-5128-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Awschalom, D. D., and M. R. Freeman. "Optical studies of diluted magnetic semiconductor superlattices." Journal of Luminescence 44, no. 4-6 (December 1989): 399–409. http://dx.doi.org/10.1016/0022-2313(89)90069-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cheng, Shun-Jen. "Magnetic phases of magnetic polarons in diluted magnetic semiconductor nanocrystals." physica status solidi (c) 6, no. 4 (April 2009): 829–32. http://dx.doi.org/10.1002/pssc.200880596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xu, Wen, and Yong Guo. "Spin-dependent transport in diluted-magnetic-semiconductor/semiconductor quantum wires." Journal of Applied Physics 100, no. 3 (August 2006): 033901. http://dx.doi.org/10.1063/1.2219336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Guo, Y., L. Han, R. Zhu, and W. Xu. "Spin-dependent shot noise in diluted-magnetic-semiconductor/ semiconductor heterostructures." European Physical Journal B 62, no. 1 (March 2008): 45–51. http://dx.doi.org/10.1140/epjb/e2008-00117-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Stolyarchuk, I. D., I. Rogalska, S. V. Koretskii, and I. Stefaniuk. "Magnetic studies of PbMnI2 Layered Diluted Magnetic Semiconductor Nanoparticles." Journal of Nano- and Electronic Physics 10, no. 5 (2018): 05005–1. http://dx.doi.org/10.21272/jnep.10(5).05005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shihui, Ge, Yin Jinglei, and Zhang Huaxin. "Magnetic properties of diluted magnetic semiconductor nanowires CoxSn1−xO2." Journal of Applied Physics 104, no. 6 (September 15, 2008): 063906. http://dx.doi.org/10.1063/1.2979713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Twardowski, A., T. Fries, Y. Shapira, P. Eggenkamp, H. J. M. Swagten, and M. Demianiuk. "Magnetic properties of the diluted magnetic semiconductor Zn1−xCrxSe." Journal of Applied Physics 73, no. 10 (May 15, 1993): 5745–47. http://dx.doi.org/10.1063/1.353558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ayoub, J. P., L. Favre, A. Ronda, I. Berbezier, P. De Padova, and B. Olivieri. "Structural and magnetic properties of GeMn diluted magnetic semiconductor." Materials Science in Semiconductor Processing 9, no. 4-5 (August 2006): 832–35. http://dx.doi.org/10.1016/j.mssp.2006.08.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yang, Tianye, He Yang, Pan Wang, Rui Zhao, Chuanhai Xiao, Shuangming Wang, Bingxin Xiao, Zhifang Li, and Mingzhe Zhang. "Magnetic phase transition of Ag2S:Eu diluted magnetic semiconductor nanoparticles." RSC Advances 4, no. 64 (July 9, 2014): 33645. http://dx.doi.org/10.1039/c4ra02361g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hou, Qingteng, Kai Chen, Hongguang Zhang, Yongtao Li, Hao Liu, Xueguang Dong, Yongchao Huang, and Qi Li. "Magnetic Properties of Co doped ZnS Diluted Magnetic Semiconductor." Journal of Physics: Conference Series 430 (April 22, 2013): 012076. http://dx.doi.org/10.1088/1742-6596/430/1/012076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Eggenkamp, P. J. T., C. W. H. M. Vennix, T. Story, H. J. M. Swagten, C. H. W. Swüste, and W. J. M. de Jonge. "Magnetic study of the diluted magnetic semiconductor Sn1−xMnxTe." Journal of Applied Physics 75, no. 10 (May 15, 1994): 5728–30. http://dx.doi.org/10.1063/1.355596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Moon, K., and P. Lyu. "Ferromagnetism in diluted magnetic semiconductor quantum dot arrays embedded in semiconductors." European Physical Journal B - Condensed Matter 36, no. 4 (December 1, 2003): 593–98. http://dx.doi.org/10.1140/epjb/e2004-00009-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Tong, Qiong Jie, Yu Zhang, Ya Xin Wang, and Xiao Chang Ni. "An Oxide-Diluted Magnetic Semiconductor: Co-Doped ZnO." Advanced Materials Research 652-654 (January 2013): 585–89. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.585.

Full text
Abstract:
The discovery of ferromagnetism (FM) in wide band-gap semiconductors doped with transition metals (TM), known as diluted magnetic semiconductors (DMSs), has attracted much interest. These materials are applicable to spin-based optoelectronic devices working at room temperature (RT). Among DMSs, the system of Co-doped ZnO is considered as the most promising candidate, which was expected to robust magnetism. This paper focuses primarily on the recent progress in the experimental studies of ZnO:Co DMSs. The magnetic properties and possible mechanism of ZnO:Co DMSs prepared by different methods are summarized and reviewed.
APA, Harvard, Vancouver, ISO, and other styles
39

Matsuda, Y. H., and N. Miura. "THz spectroscopy of diluted magnetic semiconductors and semiconductor quantum structures in ultrahigh magnetic fields." Physica E: Low-dimensional Systems and Nanostructures 20, no. 3-4 (January 2004): 360–69. http://dx.doi.org/10.1016/j.physe.2003.08.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Guo, Yong, Fei-Ruo Shen, and Xin-Yi Chen. "A tunable spin filter in periodic diluted magnetic semiconductor/semiconductor superlattices." Applied Physics Letters 101, no. 1 (July 2, 2012): 012410. http://dx.doi.org/10.1063/1.4733668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stolyarchuk, I. D., I. Rogalska, S. V. Koretskii, and I. Stefaniuk. "PbMnI2 Magnetic Studies of PbMnI2 Layered Diluted Magnetic Semiconductor Nanoparticles." Journal of Nano- and Electronic Physics 10, no. 4 (2018): 04029–1. http://dx.doi.org/10.21272/jnep.10(4).04029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dakhlaoui, H., and S. Jaziri. "Magnetic properties in III–V diluted magnetic semiconductor quantum wells." Physica B: Condensed Matter 355, no. 1-4 (January 2005): 401–7. http://dx.doi.org/10.1016/j.physb.2004.11.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, P. P., H. Makino, and T. Yao. "MBE growth and magnetic properties of InMnN diluted magnetic semiconductor." Physica E: Low-dimensional Systems and Nanostructures 21, no. 2-4 (March 2004): 983–86. http://dx.doi.org/10.1016/j.physe.2003.11.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Denissen, C. J. M., Sun Dakun, K. Kopinga, W. J. M. de Jonge, H. Nishihara, T. Sakakibara, and T. Goto. "Magnetic behavior of the diluted magnetic semiconductor (Zn1−xMnx)3As2." Physical Review B 36, no. 10 (October 1, 1987): 5316–25. http://dx.doi.org/10.1103/physrevb.36.5316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

de Jonge, W. J. M., H. J. M. Swagten, R. R. Galazka, P. Warmenbol, and J. T. Devreese. "Carrier induced magnetic interaction in the diluted magnetic semiconductor PbSnMnTe." IEEE Transactions on Magnetics 24, no. 6 (1988): 2542–47. http://dx.doi.org/10.1109/20.92168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Perrone, A., A. I. Savchuk, H. de Rosa, I. D. Stolyarchuk, V. V. Makoviy, M. M. Smolinsky, and O. A. Savchuk. "Magnetic Field Sensing Properties of Diluted Magnetic Semiconductor Based Nanocomposites." Sensor Letters 11, no. 1 (January 1, 2013): 145–48. http://dx.doi.org/10.1166/sl.2013.2783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nakamura, Kiko. "Interaction of Excitonic Magnetic Polaron Pairs in Diluted Magnetic Semiconductor." Journal of the Physical Society of Japan 75, no. 5 (May 15, 2006): 054712. http://dx.doi.org/10.1143/jpsj.75.054712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Stirner, T., J. Miao, W. E. Hagston, S. Takeyama, G. Karczewski, T. Wojtowicz, and J. Kossut. "Exciton magnetic polarons in asymmetric diluted magnetic semiconductor quantum wells." Physical Review B 60, no. 16 (October 15, 1999): 11545–49. http://dx.doi.org/10.1103/physrevb.60.11545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Eilers, Guido, and Masaaki Matsui. "Magnetic Behavior of the Diluted Magnetic Semiconductor (CuIn)1-xMn2xTe2." Journal of the Physical Society of Japan 65, no. 3 (March 15, 1996): 840–43. http://dx.doi.org/10.1143/jpsj.65.840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stirner, T., W. E. Hagston, S. Takeyama, G. Karczewski, T. Wojtowicz, and J. Kossut. "Magnetic polaron bifurcation in asymmetric diluted magnetic semiconductor quantum wells." Physica E: Low-dimensional Systems and Nanostructures 10, no. 1-3 (May 2001): 331–35. http://dx.doi.org/10.1016/s1386-9477(01)00110-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography