Academic literature on the topic 'Diluted magnetic semiconductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diluted magnetic semiconductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diluted magnetic semiconductors"

1

Chen, Sheng. "Theory And Application of Gallium Nitride Based Dilute Magnetic Semiconductors." Highlights in Science, Engineering and Technology 81 (January 26, 2024): 286–90. http://dx.doi.org/10.54097/26qm0041.

Full text
Abstract:
Semiconductors are key components for the development of Industry 4.0 innovative technologies such as consumer electronics, data centers, intelligent new energy vehicles, and aerospace technology. Academic research on semiconductors can not only promote the development of electronics and electromagnetics, but also meet the demand for high-performance semiconductors in technological development. This paper provides a review of the theoretical and experimental research results on gallium nitride based diluted magnetic semiconductors, and prospects the future application prospects of gallium nitride based diluted magnetic semiconductors. This paper found that the theoretical prediction of gallium nitride based diluted magnetic semiconductors is generally believed to have good temperature conditions and advantages in thermal conductivity, electron mobility, breakdown voltage, and other aspects. The current experimental results also confirm that gallium nitride based diluted magnetic semiconductors can improve the limitations of semiconductors under room temperature conditions. This article believes that this semiconductor material has broad development potential in fields such as intelligent vehicles, aerospace, and cloud computing.
APA, Harvard, Vancouver, ISO, and other styles
2

Samarth, N., and J. K. Furdyna. "Diluted Magnetic Semiconductors." MRS Bulletin 13, no. 6 (1988): 32–36. http://dx.doi.org/10.1557/s0883769400065477.

Full text
Abstract:
Diluted magnetic semiconductors (DMS) are semiconducting alloys whose lattice is partly made of substitutional magnetic ions. The most extensively studied materials of this type are the alloys, in which a fraction of the group II sublattice is replaced at random by Mn. The entire family of ternary alloys, along with their crystal structure and corresponding ranges of composition, is listed in Table I. Over the past decade, these alloys have attracted a growing scientific interest because of new fundamental effects in semiconductor physics and magnetism in these materials and because of their potential applications in optical nonreciprocal devices, solid state lasers, flat panel displays, infrared detectors, and other optoelectronic applications.The increasing popularity of this field can be attributed to the broad variety of fascinating problems offered by the study of the alloys. To begin with, there is an interest in the semiconducting properties per se — for instance, the understanding of the electronic band structure and its variation with alloy composition. As in other ternary alloys, the band parameters and the lattice constant can be “tuned” by controlling the alloy composition, opening the door to band-gap engineering and lattice matching in the context of epitaxially grown superlattices and het-erostructures. The random distribution of Mn atoms with a well-characterized antiferromagnetic Mn-Mn exchange interaction provides an ideal system for studying fundamental questions in disordered magnetism. The sp-d exchange interaction between the spins of band electrons and the localized moments of the Mn atoms constitutes a unique interplay between semiconductor physics and magnetism. This leads to unusual magneto-transport and magneto-optic phenomena such as an extremely large Faraday rotation, giant negative magneto-resistance, and a magnetic-field-induced metal-insulator transition. Finally, the potential technological importance of DMS is also being recognized. For example, the large Faraday rotation holds promise of DMS applications as optical isolators, modulators, and circulators. We will briefly introduce some of the exciting research problems offered by the study of DMS. More detailed information is available in several extensive reviews and compendia.
APA, Harvard, Vancouver, ISO, and other styles
3

Samarth, N., and J. K. Furdyna. "Diluted magnetic semiconductors." Proceedings of the IEEE 78, no. 6 (1990): 990–1003. http://dx.doi.org/10.1109/5.56911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Furdyna, J. K. "Diluted magnetic semiconductors." Journal of Applied Physics 64, no. 4 (1988): R29—R64. http://dx.doi.org/10.1063/1.341700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fan, Yan. "Recent progress in diluted ferromagnetism for spintronic application." Journal of Physics: Conference Series 2608, no. 1 (2023): 012046. http://dx.doi.org/10.1088/1742-6596/2608/1/012046.

Full text
Abstract:
Abstract With the continuous in-depth research of spintronics, the manufacture of high-performance magnetic random access memory devices and electronic devices that are more energy-efficient and generate less heat has received extensive attention. The traditional ferromagnet TbMnO3 is basically Tc at room temperature, which seriously limits its application. Since the discovery of diluted magnetic semiconductor materials at room temperature, such as AlNTiO2, ZnO, SnO2, etc., they have received increasing attention. Although these dopants can form ferromagnetism above-room temperature, the ferromagnetic mechanism and ferromagnetic properties are different. In this regard, we reviewed the current progress in the research on above room temperature dilute magnetic semiconductor materials; discussed the ferromagnetic mechanism of dilute magnetic semiconductors; summarized the problems and challenges, and advantages and disadvantages of different kinds of dilute magnetic semiconductor materials used in new memory devices; and prospected the application potential of spintronic devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Ved M. V., Dorokhin M. V., Lesnikov V. P., et al. "Circularly polarized electroluminescence at room temperature in heterostructures based on GaAs:Fe diluted magnetic semiconductor." Technical Physics Letters 48, no. 13 (2022): 76. http://dx.doi.org/10.21883/tpl.2022.13.53370.18836.

Full text
Abstract:
In this work, we demonstrate the possibility of using a diluted magnetic semiconductor GaAs:Fe as a ferromagnetic injector in a spin light-emitting diode based on a GaAs/InGaAs quantum well heterostructure. It is shown that in such a device it is possible to observe partially circularly polarized electroluminescence at room temperature. Keywords: spin light-emitting diodes, diluted magnetic semiconductors, A3B5 semiconductors, spin injection.
APA, Harvard, Vancouver, ISO, and other styles
7

Jiao, Yu Zhang, Xin Chao Wang, Tao Zhang, Ke Fu Yao, Zheng Jun Zhang, and Na Chen. "Magnetic Semiconductors from Ferromagnetic Amorphous Alloys." Materials Science Forum 1107 (December 6, 2023): 111–16. http://dx.doi.org/10.4028/p-jim2w4.

Full text
Abstract:
Utilizing both charge and spin degrees of freedom of electrons simultaneously in magnetic semiconductors promises new device concepts by creating an opportunity to realize data processing, transportation and storage in one single spintronic device. Unlike most of the traditional diluted magnetic semiconductors, which obtain intrinsic ferromagnetism by adding magnetic elements to non-magnetic semiconductors, we attempt to develop room temperature magnetic semiconductors via a metal-semiconductor transition by introducing oxygen into three different ferromagnetic amorphous alloy systems. These magnetic semiconductors show different conduction types determined primarily by the compositions of the selected amorphous ferromagnetic alloy systems. These findings may pave a new way to realize magnetic semiconductor-based spintronic devices that work at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
8

Hass, K. C., B. E. Larson, H. Ehrenreich, and A. E. Carlsson. "Magnetic interactions in diluted magnetic semiconductors." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1283–84. http://dx.doi.org/10.1016/0304-8853(86)90819-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Jonge, W. J. M., and H. J. M. Swagten. "Magnetic properties of diluted magnetic semiconductors." Journal of Magnetism and Magnetic Materials 100, no. 1-3 (1991): 322–45. http://dx.doi.org/10.1016/0304-8853(91)90827-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kacman, P. "Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures." Semiconductor Science and Technology 16, no. 4 (2001): R25—R39. http://dx.doi.org/10.1088/0268-1242/16/4/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Diluted magnetic semiconductors"

1

Radovanovic, Pavle V. "Synthesis, spectroscopy, and magnetism of diluted magnetic semiconductor nanocrystals /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peleckis, Germanas. "Studies on diluted oxide magnetic semiconductors for spin electronic applications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.145447/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Weigang. "Spin-dependent transport in magnetic tunnel junctions and diluted magnetic semiconductors." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 184 p, 2009. http://proquest.umi.com/pqdweb?did=1654494821&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tran, Lien. "InSb semiconductors and (In,Mn)Sb diluted magnetic semiconductors." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16334.

Full text
Abstract:
Im Rahmen dieser Arbeit wurden InSb- und verdünnt-magnetische In_{1-x}Mn_xSb Filme mittels Gasquellen-Molekularstrahlepitaxie hergestellt und deren strukturelle und elektronische Eigenschaften untersucht. Die 2 μm InSb-Dünnschichten wurden sowohl auf GaAs(001)-Substrat als auch um 4° in Richtung [110] fehlgeschnittenem Si(001)-Substrat hergestellt. Optimierte InSb-Schichten direkt auf GaAs zeigen eine hohe kristalline Qualität, niedriges Rauschen und eine Elektronenbeweglichkeit von 41100 cm^2/Vs bei 300 K. Die Ladungsträgerkonzentration beträgt etwa 2,9e16 cm^{-3}. Um InSb-Dünnschichten guter Qualität auf Si-Substrat zu realisieren, wurden fehlgeschnittene Substrate benutzt. Zur Reduzierung der Gitterfehlanpassung wurden Pufferschichten gewachsen. Eine Elektronenmobilität von 24000 cm^2/Vs und Ladungsträgerkonzentration von 2,6e16 cm^{-3} wurden bei 300 K nachgewiesen. Diese Probe enthält ein 0,06 μm GaAs/AlSb-Supergitter als Pufferschicht (Wachstumstemperatur war 340°C). Diese Probe zeigt der höheren Dichte der Microtwins und Stapelfehler als auch den Threading-Versetzungen in der schnittstellennahen Region geschuldet. Die Deep-Level Rauschspektren zeigen die Existenz von Deep-Levels sowohl in GaAs- als auch in Si-basierten Proben. Die InSb-Filme auf Si-Substrat zeigen einen kleineren Hooge-Faktor im Vergleich zu Schichten auf GaAs (300 K). Unter Anwendung der optimierten Wachstumsbedingungen für InSb/GaAs wurden verdünnt-magnetische In_{1-x}Mn_xSb-Schichten (bis zum 1% Mangan) auf GaAs (001)-realisiert. Mn verringert die Gitterkonstante und damit den Grad der Relaxation von (In,Mn)Sb-Filmen. In den Proben befindet sich Mn in zwei magnetischen Formen, sowohl als verdünnt-magnetischer Halbleiter (In,Mn)Sb, als auch als MnSb-Cluster. Die Cluster dominieren auf der Oberfläche. Die Curie-Temperatur, Tc, unterscheidet sich für die beiden Formen. Für (In,Mn)Sb ist Tc kleiner als 50 K. Die MnSb-Cluster zeigen dagegen ein Tc über 300 K.<br>This dissertation describes the growth by molecular beam epitaxy and the characterization of the semiconductor InSb and the diluted magnetic semiconductor (DMS) In_{1-x}Mn_xSb. The 2 µm-thick InSb films were grown on GaAs (001) substrate and Si (001) offcut by 4° toward (110) substrate. After optimizing the growth conditions, the best InSb films grown directly on GaAs results in a high crystal quality, low noise, and an electron mobility of 41100 cm^2/V s Vs with associated electron concentration of 2.9e16 cm^{-3} at 300 K. In order to successfully grow InSb on Si, tilted substrates and the insertion of buffer layers were used. An electron mobility of 24000 cm^2/V s measured at 300 K, with an associated carrier concentration of 2.6e16 cm^{-3} is found for the best sample that was grown at 340°C with a 0.06 μm-thick GaSb/AlSb superlattice buffer layer. The sample reveals a density of microtwins and stacking faults as well as threading dislocations in the near-interface. Deep level noise spectra indicate the existence of deep levels in both GaAs and Si-based samples. The Si-based samples exhibit the lowest Hooge factor at 300 K, lower than the GaAs-based samples. Taking the optimized growth conditions of InSb/GaAs, the DMS In_{1-x}Mn_xSb/GaAs is prepared by adding Mn (x < 1%) into the InSb during growth. Mn decreases the lattice constant as well as the degree of relaxation of (In,Mn)Sb films. Mn also distributes itself to result in two different and distinct magnetic materials: the DMS (In,Mn)Sb and clusters MnSb. The MnSb clusters dominate only on the surface. For the DMS alloy (In,Mn)Sb, the measured values of Curie temperature Tc appears to be smaller than 50 K, whereas it is greater than 300 K for the MnSb clusters.
APA, Harvard, Vancouver, ISO, and other styles
5

Mishra, Subodha. "Theory of photo-induced ferro-magnetism in dilute magnetic semiconductors." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4413.

Full text
Abstract:
Thesis (Ph. D.) University of Missouri-Columbia, 2006.<br>The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 6, 2007) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Horsfall, Alton Barrett. "Electrical and magnetic properties of II-VI diluted magnetic semiconductors." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4984/.

Full text
Abstract:
The electrical and magnetic properties of MOVPE grown epitaxial layers of Hg(_1-x)Mn(_x)Te layers has been investigated using a number of techniques. The samples have been grown by the Inter Diffused Multilayer Process, (IMP) on (100) semi insulating GaAs substrates with ZnTe and CdTe buffer layers. The samples have been shown to show a number of phenomena nopt observed in the bulk material, such as an anomaly in the resistivity, rnagnetoresistance related to the intrinsic magnetism of the material, and saturation of the room temperature magnetisation. In general the samples are of a highly compensated nature with the value of |R(_H)e|(^-1) varying between l0(^14) and 5xI0(^17) cm(^-3) at 20K, the Hall mobilities varying between 8 and 3.5x10(^5) cm(^2)V(^-1)s(^-1) at 20K. Magnetically, the samples generally show a paramagnetic signal that is swamped by the diamagnetic background of the substrate and buffer layers. The paramagnetisrn can be well modelled using a Curie Weiss fit. A number of the samples show a saturation in the magnetisation, which, has been explained via the use of vacancy ordering within MnTe regions in the sample. The susceptibility of the samples has been investigated using a Faraday balance system, and this data has been fitted using; a cluster model for Mn ions within the sample. The photomagnetisation of Cd(_0.9)Mn(_0.1)Te:In has been investigated using a faraday balance system, and modelled using the work of Dietl and Sample, to calculate the number of polarons that had formed on donors in the sample, ΔN(_D)(^MAG) = 1.28x10(^15)cm(^-3). The number of donors in the sample has been measured by means of the Hall effect, ΔN(_D)(^ELEC) = 1.92x10(^15)cm(^-3), and this value compared to that obtained from the model. We have proposed a model to explain this discrepancy based on the concept of band tails in the impurity band.
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Lunmei. "Computational Material Design : Diluted Magnetic Semiconductors for Spintronics." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Norberg, Nicholas S. "Magnetic nanocrystals : synthesis and properties of diluted magnetic semiconductor quantum dots /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gatuna, Ngigi wa. "Intrinsic vacancy chalcogenides as dilute magnetic semiconductors : theoretical investigation of transition-metal doped gallium selenide /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miao, Jingqi. "The theory of magnetic polarons and magnetic field effect in diluted magnetic semiconductors." Thesis, University of Hull, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Diluted magnetic semiconductors"

1

1933-, Furdyna J. K., and Kossut J, eds. Diluted magnetic semiconductors. Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1937-, Aggarwal R. L., Furdyna J. K. 1933-, Von Molnar S. 1935-, and Materials Research Society, eds. Diluted magnetic (semimagnetic) semiconductors. Materials Research Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Averous, Michel. Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Springer US, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Averous, Michel, and Minko Balkanski, eds. Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

International School of Materials Science and Technology (1990 Erice, Italy). Semimagnetic semiconductors and diluted magnetic semiconductors. Plenum Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krevet, Rasmus. FIR-laser magnetooptics on Cr-based diluted magnetic semiconductors. Cuvillier Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacek, Kossut, and SpringerLink (Online service), eds. Introduction to the Physics of Diluted Magnetic Semiconductors. Springer-Verlag Berlin Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gaj, Jan A., and Jacek Kossut, eds. Introduction to the Physics of Diluted Magnetic Semiconductors. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15856-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strutz, Thomas. High magnetic field electron spin-lattice relaxation in a diluted magnetic semiconductor: CdMnTe. Hartung-Gorre Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hausenblas, Monika. Investigation of low energy excitations in novel semiconducting systems by means of far infrared magnetospectroscopy. Hartung-Gorre Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Diluted magnetic semiconductors"

1

Boughrara, Mourad, Abdelhamid Ait M'Hid, and Mohamed Kerouad. "Diluted Magnetic Semiconductors." In Handbook of Semiconductors. CRC Press, 2024. http://dx.doi.org/10.1201/9781003450146-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolff, P. A. "Bound Magnetic Polarons in Diluted Magnetic Semiconductors." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Twardowski, A. "Magnetism of Fe-Based Diluted Magnetic Semiconductors." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hass, K. C. "Band Structure and Theory of Magnetic Interactions in Diluted Magnetic Semiconductors." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Jonge, W. J. M., and H. J. M. Swagten. "Magnetic Behavior of Diluted Magnetic Semiconductors." In NATO ASI Series. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2590-9_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takeyama, S. "Magnetic Polarons in Diluted Magnetic Semiconductors." In Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04143-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Konig, Jürgen, Hsiu-Hau Lin, and Allan H. MacDonald. "Ferromagnetism in Diluted Magnetic Semiconductors." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dietl, T., M. Sawicki, J. Jaroszyński, J. Wróbel, T. Wojtowicz, and A. Lenard. "Localization in Diluted Magnetic Semiconductors." In Localization and Confinement of Electrons in Semiconductors. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84272-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kossut, J., and W. Dobrowolski. "Properties of diluted magnetic semiconductors." In Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications. Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Averous, M. "Background on Semimagnetic Semiconductors." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diluted magnetic semiconductors"

1

Podoleanu, Adrian Gh, Radu G. Cucu, and David A. Jackson. "Magnetic field sensors utilizing diluted magnetic semiconductors." In SIOEL: Sixth Symposium of Optoelectronics, edited by Teodor Necsoiu, Maria Robu, and Dan C. Dumitras. SPIE, 2000. http://dx.doi.org/10.1117/12.378733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nolte, D. D., R. S. Rana, Eunsoon Oh, K. Chua, I. Miotkowski, and A. K. Ramdas. "Magneto-Photorefractive Effects in a Diluted Magnetic Semiconductor." In Photorefractive Materials, Effects, and Devices II. Optica Publishing Group, 1993. http://dx.doi.org/10.1364/pmed.1993.fre.3.

Full text
Abstract:
Magneto-electro-optic effects introduce a new dimension to electro- optic and photorefractive pnenomena. Diluted magnetic semiconductors (DMS), such as CdMnTe, have pronounced magneto-optic effects that can be tailored by controlling the fraction of the magnetic ion. II-VI semiconductors, such as CdTe, have already been shown to have good linear electro-optic and photorefractive properties.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, M. K., S. J. Lee, S. U. Yuldashev, et al. "Phase Transition of Diluted Magnetic Semiconductor." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takahashi, Masao. "Transport properties of diluted magnetic semiconductors." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Du, Y. W., F. M. Zhang, D Wu, and S. J. Xiong. "Spin transport in Diluted Magnetic Semiconductors." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MIURA, N., Y. H. MATSUDA, and T. IKAIDA. "MEGAGAUSS CYCLOTRON RESONANCE IN SEMICONDUCTOR NANOSTRUCTURES AND DILUTED MAGNETIC SEMICONDUCTORS." In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krevet, R. "Magnetooptics on chromium-based diluted magnetic semiconductors." In 17th International Conference on Infrared and Millimeter Waves. SPIE, 2017. http://dx.doi.org/10.1117/12.2298229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stephanovich, Vladimir A., Elena V. Kirichenko, and Yuri G. Semenov. "Photoinduced magnetization wave in diluted magnetic semiconductors." In Integrated Optoelectronic Devices 2006, edited by Kong-Thon Tsen, Jin-Joo Song, and Hongxing Jiang. SPIE, 2006. http://dx.doi.org/10.1117/12.639900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ICHIMURA, M., K. TANIKAWA, S. TAKAHASHI, G. BASKARAN, and S. MAEKAWA. "MAGNETIC IMPURITY STATES AND FERROMAGNETIC INTERACTION IN DILUTED MAGNETIC SEMICONDUCTORS." In Proceedings of the 8th International Symposium. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773210_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stolichnov, I., S. W. E. Riester, H. J. Trodahl, et al. "Ferroelectric control of ferromagnetism in diluted magnetic semiconductors." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693725.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diluted magnetic semiconductors"

1

El-Masry, Nadia A., and S. M. Bedair. Room Temperature Devices of Dilute Magnetic Semiconductors. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada432896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ullrich, Carsten A. Charge and Spin Transport in Dilute Magnetic Semiconductors. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/960296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Weidong, and Dwight Woolard. Magneto-Transpots in Interband Resonant Tunneling Diodes (I-RTDs) and Dilute Magnetic Semiconductor (DMS) I-RTDs. Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada577381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lawniczak-Jablonska, K., [Institute of Physics, Warsaw (Poland)], J. J. Jia, and J. H. Underwood. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/603587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography