To see the other types of publications on this topic, follow the link: Diluted magnetic semiconductors.

Journal articles on the topic 'Diluted magnetic semiconductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diluted magnetic semiconductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Samarth, N., and J. K. Furdyna. "Diluted Magnetic Semiconductors." MRS Bulletin 13, no. 6 (June 1988): 32–36. http://dx.doi.org/10.1557/s0883769400065477.

Full text
Abstract:
Diluted magnetic semiconductors (DMS) are semiconducting alloys whose lattice is partly made of substitutional magnetic ions. The most extensively studied materials of this type are the alloys, in which a fraction of the group II sublattice is replaced at random by Mn. The entire family of ternary alloys, along with their crystal structure and corresponding ranges of composition, is listed in Table I. Over the past decade, these alloys have attracted a growing scientific interest because of new fundamental effects in semiconductor physics and magnetism in these materials and because of their potential applications in optical nonreciprocal devices, solid state lasers, flat panel displays, infrared detectors, and other optoelectronic applications.The increasing popularity of this field can be attributed to the broad variety of fascinating problems offered by the study of the alloys. To begin with, there is an interest in the semiconducting properties per se — for instance, the understanding of the electronic band structure and its variation with alloy composition. As in other ternary alloys, the band parameters and the lattice constant can be “tuned” by controlling the alloy composition, opening the door to band-gap engineering and lattice matching in the context of epitaxially grown superlattices and het-erostructures. The random distribution of Mn atoms with a well-characterized antiferromagnetic Mn-Mn exchange interaction provides an ideal system for studying fundamental questions in disordered magnetism. The sp-d exchange interaction between the spins of band electrons and the localized moments of the Mn atoms constitutes a unique interplay between semiconductor physics and magnetism. This leads to unusual magneto-transport and magneto-optic phenomena such as an extremely large Faraday rotation, giant negative magneto-resistance, and a magnetic-field-induced metal-insulator transition. Finally, the potential technological importance of DMS is also being recognized. For example, the large Faraday rotation holds promise of DMS applications as optical isolators, modulators, and circulators. We will briefly introduce some of the exciting research problems offered by the study of DMS. More detailed information is available in several extensive reviews and compendia.
APA, Harvard, Vancouver, ISO, and other styles
2

Samarth, N., and J. K. Furdyna. "Diluted magnetic semiconductors." Proceedings of the IEEE 78, no. 6 (June 1990): 990–1003. http://dx.doi.org/10.1109/5.56911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Furdyna, J. K. "Diluted magnetic semiconductors." Journal of Applied Physics 64, no. 4 (August 15, 1988): R29—R64. http://dx.doi.org/10.1063/1.341700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hass, K. C., B. E. Larson, H. Ehrenreich, and A. E. Carlsson. "Magnetic interactions in diluted magnetic semiconductors." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1283–84. http://dx.doi.org/10.1016/0304-8853(86)90819-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Jonge, W. J. M., and H. J. M. Swagten. "Magnetic properties of diluted magnetic semiconductors." Journal of Magnetism and Magnetic Materials 100, no. 1-3 (November 1991): 322–45. http://dx.doi.org/10.1016/0304-8853(91)90827-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kacman, P. "Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures." Semiconductor Science and Technology 16, no. 4 (March 2, 2001): R25—R39. http://dx.doi.org/10.1088/0268-1242/16/4/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blinowski, J., P. Kacman, and J. A. Majewski. "Superexchange in Diluted Magnetic Semiconductors." Materials Science Forum 182-184 (February 1995): 779–82. http://dx.doi.org/10.4028/www.scientific.net/msf.182-184.779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ivanov, V. A. "Diluted magnetic semiconductors and spintronics." Bulletin of the Russian Academy of Sciences: Physics 71, no. 11 (November 2007): 1610–12. http://dx.doi.org/10.3103/s1062873807110433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Twardowski, A. "Diluted Magnetic III-V Semiconductors." Acta Physica Polonica A 98, no. 3 (September 2000): 203–16. http://dx.doi.org/10.12693/aphyspola.98.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Munekata, H., H. Ohno, S. von Molnar, Armin Segmüller, L. L. Chang, and L. Esaki. "Diluted magnetic III-V semiconductors." Physical Review Letters 63, no. 17 (October 23, 1989): 1849–52. http://dx.doi.org/10.1103/physrevlett.63.1849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bryksa, V. P. "Diluted magnetic A1-xMnxB semiconductors." Semiconductor Physics, Quantum Electronics and Optoelectronics 7, no. 2 (June 17, 2004): 119–28. http://dx.doi.org/10.15407/spqeo7.02.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

KOSSUT, J., and W. DOBROWOLSKI. "ChemInform Abstract: Diluted Magnetic Semiconductors." ChemInform 27, no. 25 (August 5, 2010): no. http://dx.doi.org/10.1002/chin.199625325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

SAMARTH, N., and J. K. FURDYNA. "ChemInform Abstract: Diluted Magnetic Semiconductors." ChemInform 22, no. 15 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199115305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bhattacharjee, A. K. "Chromium-based diluted magnetic semiconductors." Physical Review B 49, no. 19 (May 15, 1994): 13987–90. http://dx.doi.org/10.1103/physrevb.49.13987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tripathi, G. S., B. G. Mahanty, and S. N. Behera. "Photomaganetization in diluted magnetic semiconductors." Phase Transitions 78, no. 1-3 (January 2005): 229–37. http://dx.doi.org/10.1080/01411590412331316564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mohanty, Sunita, and S. Ravi. "Magnetic properties of -based diluted magnetic semiconductors." Solid State Communications 150, no. 33-34 (September 2010): 1570–74. http://dx.doi.org/10.1016/j.ssc.2010.05.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shapira, Y. "Diluted Magnetic Semiconductors in High Magnetic Fields." Acta Physica Polonica A 87, no. 1 (January 1995): 107–17. http://dx.doi.org/10.12693/aphyspola.87.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hagston, W. E., T. Stirner, J. P. Goodwin, and P. Harrison. "Magnetic-field effects in diluted magnetic semiconductors." Physical Review B 50, no. 8 (August 15, 1994): 5255–63. http://dx.doi.org/10.1103/physrevb.50.5255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Archer, Thomas, Chaitanya Das Pemmaraju, and Stefano Sanvito. "Magnetic properties of ZrO2-diluted magnetic semiconductors." Journal of Magnetism and Magnetic Materials 316, no. 2 (September 2007): e188-e190. http://dx.doi.org/10.1016/j.jmmm.2007.02.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Maksymowicz, L. J., M. Lubecka, R. Szymczak, W. Powroźnik, and H. Jankowski. "Magnetic parameters of diluted magnetic semiconductors CdCr2Se4." Journal of Magnetism and Magnetic Materials 242-245 (April 2002): 924–27. http://dx.doi.org/10.1016/s0304-8853(01)01321-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hagston, W. E., T. Stirner, and J. Miao. "Localized magnetic polarons in diluted magnetic semiconductors." Journal of Applied Physics 82, no. 11 (December 1997): 5653–57. http://dx.doi.org/10.1063/1.366426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MIURA, N., Y. H. MATSUDA, and T. IKAIDA. "MEGAGAUSS CYCLOTRON RESONANCE IN SEMICONDUCTOR NANOSTRUCTURES AND DILUTED MAGNETIC SEMICONDUCTORS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3399–404. http://dx.doi.org/10.1142/s0217979202014565.

Full text
Abstract:
We report the latest results of cyclotron resonance experiments on semiconductor nanostructures and diluted magnetic semiconductors (DMS) in very high magnetic fields up to 600 T produced by magnetic flux compression and the single turn coiled technique. Many new features were observed in the very high field range, such as characteristic behavior of low dimensional electrons, carrier dynamics or electron-electron interaction effects in quantum wells and quantum dot samples. In PbSe/PdEuTe quantum dots, which were regularly arranged to form an fcc superlattice, we observed an absorption peak with a splitting and a wavelength dependence of the absorption intensity. In DMS, such as CdMnTe and InMnAs, change of the carrier effective mass with Mn doping was studied in detail. We found anomalous mass increase with doping of magnetic ions. The amount of the observed mass increase cannot be explained by the k·p theory and suggests the importance of d-s or d-p hybridization.
APA, Harvard, Vancouver, ISO, and other styles
23

Dietl. "FERROMAGNETIC TRANSITION IN DILUTED MAGNETIC SEMICONDUCTORS." Condensed Matter Physics 2, no. 3 (1999): 495. http://dx.doi.org/10.5488/cmp.2.3.495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Slobodskyy, Dugaev, and Vieira. "FERROMAGNETIC ORDERING IN DILUTED MAGNETIC SEMICONDUCTORS." Condensed Matter Physics 5, no. 3 (2002): 531. http://dx.doi.org/10.5488/cmp.5.3.531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Triki, M., and S. Jaziri. "Electron states in diluted magnetic semiconductors." Superlattices and Microstructures 38, no. 2 (August 2005): 122–29. http://dx.doi.org/10.1016/j.spmi.2005.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jaroszyński, J., and T. Dietl. "Mesoscopic phenomena in diluted magnetic semiconductors." Materials Science and Engineering: B 84, no. 1-2 (July 2001): 81–87. http://dx.doi.org/10.1016/s0921-5107(01)00574-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Furdyna, J. K. "Diluted magnetic semiconductors: Issues and opportunities." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, no. 4 (July 1986): 2002–9. http://dx.doi.org/10.1116/1.574016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bouzerar, Richard, and Georges Bouzerar. "Unified picture for diluted magnetic semiconductors." EPL (Europhysics Letters) 92, no. 4 (November 1, 2010): 47006. http://dx.doi.org/10.1209/0295-5075/92/47006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Timm, Carsten. "Disorder effects in diluted magnetic semiconductors." Journal of Physics: Condensed Matter 15, no. 50 (December 3, 2003): R1865—R1896. http://dx.doi.org/10.1088/0953-8984/15/50/r03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sato, K., P. H. Dederichs, H. Katayama-Yoshida, and J. Kudrnovský. "Exchange interactions in diluted magnetic semiconductors." Journal of Physics: Condensed Matter 16, no. 48 (November 20, 2004): S5491—S5497. http://dx.doi.org/10.1088/0953-8984/16/48/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rodriguez, S., and A. K. Ramdas. "Raman scattering by diluted magnetic semiconductors." Pure and Applied Chemistry 59, no. 10 (January 1, 1987): 1269–84. http://dx.doi.org/10.1351/pac198759101269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kudrnovský, J., V. Drchal, G. Bouzerar, and R. Bouzerar. "Ordering effects in diluted magnetic semiconductors." Phase Transitions 80, no. 4-5 (April 2007): 333–50. http://dx.doi.org/10.1080/01411590701228265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Harrison, P., J. M. Fatah, T. Stirner, and W. E. Hagston. "Alloy nonrandomness in diluted magnetic semiconductors." Journal of Applied Physics 79, no. 3 (February 1996): 1684–88. http://dx.doi.org/10.1063/1.360954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dietl, T., G. Grabecki, and J. Jaroszynski. "Mesoscopic phenomena in diluted magnetic semiconductors." Semiconductor Science and Technology 8, no. 1S (January 1, 1993): S141—S146. http://dx.doi.org/10.1088/0268-1242/8/1s/032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Karpov, V. G., and E. I. Tsidil’kovskii. "Band tails in diluted magnetic semiconductors." Physical Review B 49, no. 7 (February 15, 1994): 4539–48. http://dx.doi.org/10.1103/physrevb.49.4539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Blinowski, J., and P. Kacman. "Kinetic exchange in diluted magnetic semiconductors." Physical Review B 46, no. 19 (November 15, 1992): 12298–304. http://dx.doi.org/10.1103/physrevb.46.12298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Felici, A. C., F. Lama, M. Piacentini, T. Papa, D. Debowska, A. Kisiel, and A. Rodzik. "Photoacoustic spectroscopy of diluted magnetic semiconductors." Journal of Applied Physics 80, no. 12 (December 15, 1996): 6925–30. http://dx.doi.org/10.1063/1.363766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lewicki, A., J. Spałek, J. K. Furdyna, and R. R. Gała̧zka. "Superexchange in diluted magnetic (semimagnetic) semiconductors." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1221–22. http://dx.doi.org/10.1016/0304-8853(86)90790-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Larson, B. E., K. C. Hass, H. Ehrenreich, and A. E. Carlsson. "Exchange mechanisms in diluted magnetic semiconductors." Solid State Communications 56, no. 4 (October 1985): 347–50. http://dx.doi.org/10.1016/0038-1098(85)90399-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Furdyna, J. K. "Shallow centers in diluted magnetic semiconductors." Solid State Communications 53, no. 12 (March 1985): 1097–101. http://dx.doi.org/10.1016/0038-1098(85)90886-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Seshadri, Ram. "Zinc oxide-based diluted magnetic semiconductors." Current Opinion in Solid State and Materials Science 9, no. 1-2 (February 2005): 1–7. http://dx.doi.org/10.1016/j.cossms.2006.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bhattacharjee, A. K. "Orbital exchange in diluted magnetic semiconductors." Journal of Crystal Growth 138, no. 1-4 (April 1994): 895–99. http://dx.doi.org/10.1016/0022-0248(94)90927-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

CHOI, HEON-JIN, HAN-KYU SEONG, and UNGKIL KIM. "DILUTED MAGNETIC SEMICONDUCTOR NANOWIRES." Nano 03, no. 01 (February 2008): 1–19. http://dx.doi.org/10.1142/s1793292008000848.

Full text
Abstract:
An idea for simultaneously manipulating spin and charge in a single semiconductor medium has resulted in the development of diluted magnetic semiconductors (DMSs), which exhibits surprisingly room temperature ferromagnetic signatures despite having controversial ferromagnetic origin. However, achievement of truly room temperature ferromagnetism by carrier mediation is still the subject of intense research to develop the practical spin-based devices. Nanowires with one-dimensional nanostructure, which offers thermodynamically stable features and typically single crystalline and defect free, have a number of advantages over thin films with respect to studying ferromagnetism in DMSs. This review focuses primarily on our works on GaN -based DMS nanowires, i.e., Mn -doped GaN , Mn -doped AlGaN and Cu -doped GaN nanowires. These DMS nanowires have room temperature ferromagnetism by the local magnetic moment of doping elements that are in a divalent state and in tetrahedral coordination, thus substituting Ga in the wurtzite-type network structure of host materials. Importantly, our evidences indicate that the magnetism is originated from the ferromagnetic interaction driven by the carrier. These outcomes suggest that nanowires are ideal building blocks to address the magnetism in DMS due to their thermodynamic stability, single crystallinity, free of defects and free standing nature from substrate. Nanowires themselves are ideal building blocks for nanodevices and, thus, it would also be helpful in developing DMS-based spin devices.
APA, Harvard, Vancouver, ISO, and other styles
44

Kanazawa, I. "Photo-induced magnetic-solitons in diluted magnetic semiconductors." Physica E: Low-dimensional Systems and Nanostructures 21, no. 2-4 (March 2004): 961–65. http://dx.doi.org/10.1016/j.physe.2003.11.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hagston, W. E., T. Stirner, P. Harrison, O. F. Holbrook, and J. P. Goodwin. "Impurity-bound magnetic polarons in diluted magnetic semiconductors." Physical Review B 50, no. 8 (August 15, 1994): 5264–71. http://dx.doi.org/10.1103/physrevb.50.5264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

DE JONGE, W. J. M., and H. J. M. SWAGTEN. "ChemInform Abstract: Magnetic Properties of Diluted Magnetic Semiconductors." ChemInform 23, no. 20 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199220328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

DE JONGE, W. J. M., and H. J. M. SWAGTEN. "ChemInform Abstract: Magnetic Behavior of Diluted Magnetic Semiconductors." ChemInform 23, no. 38 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199238290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Skipetrov, E. P., A. A. Solovev, A. V. Knotko, and V. E. Slynko. "Magnetic properties of diluted magnetic semiconductors Pb1–yFeyTe." Low Temperature Physics 43, no. 4 (April 2017): 466–74. http://dx.doi.org/10.1063/1.4983228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bednarski, Henryk, and Jozef Spałek. "Bound-magnetic-polaron molecule in diluted magnetic semiconductors." Journal of Physics: Condensed Matter 24, no. 23 (May 10, 2012): 235801. http://dx.doi.org/10.1088/0953-8984/24/23/235801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mac, W., A. Twardowski, P. J. T. Eggenkamp, H. J. M. Swagten, Y. Shapira, and M. Demianiuk. "Magnetic properties of Cr-based diluted magnetic semiconductors." Physical Review B 50, no. 19 (November 15, 1994): 14144–54. http://dx.doi.org/10.1103/physrevb.50.14144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography