Academic literature on the topic 'Dimension de Hausdorff'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dimension de Hausdorff.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dimension de Hausdorff"
Myjak, Józef. "Some typical properties of dimensions of sets and measures." Abstract and Applied Analysis 2005, no. 3 (2005): 239–54. http://dx.doi.org/10.1155/aaa.2005.239.
Full textConidis, Chris J. "A real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one." Journal of Symbolic Logic 77, no. 2 (June 2012): 447–74. http://dx.doi.org/10.2178/jsl/1333566632.
Full textLeonov, G. "Hausdorff–Lebesgue Dimension of Attractors." International Journal of Bifurcation and Chaos 27, no. 10 (September 2017): 1750164. http://dx.doi.org/10.1142/s0218127417501644.
Full textDAS, TUSHAR, LIOR FISHMAN, DAVID SIMMONS, and MARIUSZ URBAŃSKI. "Badly approximable points on self-affine sponges and the lower Assouad dimension." Ergodic Theory and Dynamical Systems 39, no. 3 (June 20, 2017): 638–57. http://dx.doi.org/10.1017/etds.2017.42.
Full textZÄHLE, M. "THE AVERAGE FRACTAL DIMENSION AND PROJECTIONS OF MEASURES AND SETS IN Rn." Fractals 03, no. 04 (December 1995): 747–54. http://dx.doi.org/10.1142/s0218348x95000667.
Full textUrbański, Mariusz. "Transfinite Hausdorff dimension." Topology and its Applications 156, no. 17 (November 2009): 2762–71. http://dx.doi.org/10.1016/j.topol.2009.01.025.
Full textJ�rgensen, H., and L. Staiger. "Local Hausdorff dimension." Acta Informatica 32, no. 5 (August 1, 1995): 491–507. http://dx.doi.org/10.1007/s002360050025.
Full textJürgensen, H., and L. Staiger. "Local Hausdorff dimension." Acta Informatica 32, no. 5 (May 1995): 491–507. http://dx.doi.org/10.1007/bf01213081.
Full textSIMMONS, DAVID. "A Hausdorff measure version of the Jarník–Schmidt theorem in Diophantine approximation." Mathematical Proceedings of the Cambridge Philosophical Society 164, no. 3 (April 5, 2017): 413–59. http://dx.doi.org/10.1017/s0305004117000214.
Full textSHANG, LEI, and MIN WU. "SLOW GROWTH RATE OF THE DIGITS IN ENGEL EXPANSIONS." Fractals 28, no. 03 (May 2020): 2050047. http://dx.doi.org/10.1142/s0218348x20500474.
Full textDissertations / Theses on the topic "Dimension de Hausdorff"
Mucheroni, Laís Fernandes [UNESP]. "Dimensão de Hausdorff e algumas aplicações." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Full textApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Reeve, Russell Lynn. "Estimating the Hausdorff dimension." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/37744.
Full textSpear, Donald W. "Hausdorff, Packing and Capacity Dimensions." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc330990/.
Full textSerantola, Leonardo Pereira. "Dimensão generalizada de Hausdorff /." São José do Rio Preto, 2019. http://hdl.handle.net/11449/191015.
Full textResumo: O presente trabalho trata de conceitos relacionados com a medida generalizada de Hausdorff, onde o principal objetivo consiste na obtenção de conjuntos cuja dimensão seja um número positivo não inteiro. Ele começa com uma definição sobre as propriedades que uma função de conjunto deve satisfazer para ser considerada uma medida de Carathéodory, suas implicações e consequências. Após a explicação destes conceitos iniciais, dá-se alguns exemplos de funções de conjunto contínuas e monótonas com a apresentação da função de escala logarítmica, que é peça chave para o desenvolvimento de conjuntos de medidas positivas não inteiras, além da introdução da medida de Hausdorff com seus desdobramentos. Algumas hipóteses sobre funções côncavas são apresentadas juntamente com fórmulas deduzidas com bases nestas hipóteses e na concavidade da função. Utiliza-se a função de escala logarítima para a determinação da dimensão de vários conjuntos, inclusive o conjunto de Cantor. Posteriormente, há uma adaptação dos conceitos trabalhados para o tratamento de dimensões relacionadas à números diádicos irracionais. Por fim, os conceitos tratados sobre a reta real são estendidos para produtos cartesianos, com especial enfoque para conjuntos planares.
Abstract: The present work deals with concepts related to the generalized Hausdorff measure, where the main objective is to obtain sets whose dimension is a positive non integer number. It begins with a definition of the properties that a set function must satisfy to be considered a Carathéodory measure, their implications and consequences. Following the explanation of these initial concepts, some examples of continuous and monotonous set functions are given with the presentation of the logarithmic scale function, which is key to the development of non-integer positive measure sets, in addition to the introduction of the Hausdorff measure with its developments. Some assumptions about concave functions are presented together with formulas derived from these assumptions and the concavity of the function. The logarithmic scale function is used to determine the dimension of various sets, including the Cantor set. Later, there is an adaptation of the concepts worked for the treatment of dimensions related to irrational dyadic numbers. Finally, the concepts treated on the real line are extended to Cartesian products, with special focus on planar sets.
Mestre
Dufloux, Laurent. "Dimension de Hausdorff des ensembles limites." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD022/document.
Full textLet G be the group SO° (1,n) (n ≥ 3) or PU(1, n) (n ≥ 2) and fix some Iwasawa decomposition G = KAN. Let ɼ be a discrete subgroup of G.We assume that ɼ is Zariski-dense with finite Bowen-Margulis-Sullivan measure. When G = SO°(1,n), we investigate the geometry of the Bowen-Margulis-Sullivan measure elong connected closed subgroups of N. This is related to the Mohammadi-Oh dichotomy. We then prove deterministic results on the dimension of projections of Patterson-Sullivan measure. When G = PU(1,n), we relate the geometry of Bowen-Margulis-Sullivan measure along the center of Heisenberg group to the problem of computing the Hausdorff dimension of the limit set with respect to the spherical metric on the boudary. We construct some Schottky subgroups for wich we are able to compute this dimension
Zürcher, Thomas Zürcher Thomas. "Hausdorff dimension and regularity of Sobolev functions /." [S.l.] : [s.n.], 2009. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textMartin, Charles 1966. "Hausdorff dimension of harmonic measures in Rd." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69764.
Full textThis thesis presents a detailed and comprehensive exposition of Bourgain's theorem. Formal definitions of harmonic measures and Hausdorff dimensions are provided and all the required preliminary results about these concepts are rigorously proved. Generally speaking, the proof of the theorem itself is similar to the one originally presented by Bourgain. However, a more structured approach and an increased level of details make the argument easier to follow and understand.
Siebert, Kitzeln B. "A modern presentation of "dimension and outer measure"." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211395297.
Full textSatiracoo, Pairote. "Hausdorff dimension of attractors of infinitely renormalizable maps." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400147.
Full textBrandão, Daniela Teresa Quaresma Santos. "Dimensões fractais e dimensão de correlação." Master's thesis, Universidade de Évora, 2008. http://hdl.handle.net/10174/17740.
Full textBooks on the topic "Dimension de Hausdorff"
1943-, Mauldin R. Daniel, and Williams S. C. 1952-, eds. The exact Hausdorff dimension in random recursive constructions. Providence, R.I., USA: American Mathematical Society, 1988.
Find full textGraf, Siegfried. The exact Hausdorff dimension in random recursive constructions. Providence, R.I: American Mathematical Society, 1988.
Find full text1972-, Tyson Jeremy T., ed. Conformal dimension: Theory and application. Providence, R.I: American Mathematical Society, 2010.
Find full textLocal dimensions of intersection measures: Similarities, linear maps and continuously differentiable functions. Helsinki: Suomalainen Tiedeakatemia, 2010.
Find full textParadoxes of measures and dimensions originating in Felix Hausdorff's ideas. Singapore: World Scientific, 1994.
Find full textPISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 Messina, Italy). Fractal geometry and dynamical systems in pure and applied mathematics. Edited by Carfi David 1971-, Lapidus, Michel L. (Michel Laurent), 1956-, Pearse, Erin P. J., 1975-, Van Frankenhuysen Machiel 1967-, and Mandelbrot Benoit B. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textMattila, Pertti. Fourier Analysis and Hausdorff Dimension. Cambridge University Press, 2015.
Find full textMattila, Pertti. Fourier Analysis and Hausdorff Dimension. Cambridge University Press, 2015.
Find full textBook chapters on the topic "Dimension de Hausdorff"
Beardon, Alan F. "Hausdorff Dimension." In Iteration of Rational Functions, 246–56. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-4422-6_10.
Full textEdgar, Gerald A. "Hausdorff Dimension." In Undergraduate Texts in Mathematics, 147–94. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-4134-6_6.
Full textWalczak, Paweł. "Hausdorff dimension." In Dynamics of Foliations, Groups and Pseudogroups, 155–82. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7887-6_5.
Full textSchwartz, Richard. "Hausdorff dimension bounds." In Mathematical Surveys and Monographs, 131–37. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/surv/197/19.
Full textFerreira, Flávio, Alberto A. Pinto, and David A. Rand. "Hausdorff Dimension versus Smoothness." In Progress in Nonlinear Differential Equations and Their Applications, 195–209. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8482-1_15.
Full textHausdorff, Felix. "Dimension und äußeres Maß." In Felix Hausdorff Gesammelte Werke, 19–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59483-0_2.
Full textBothe, Hans-Günther, and Jörg Schmeling. "Die Hausdorff-Dimension in der Dynamik." In Felix Hausdorff zum Gedächtnis, 229–52. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-80276-7_9.
Full textCharalambous, Michael G. "The Gaps Between the Dimensions of Normal Hausdorff Spaces." In Dimension Theory, 245–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22232-1_32.
Full textFlath, Dan, and Rhodes Peele. "Hausdorff Dimension in Pascal’s Triangle." In Applications of Fibonacci Numbers, 229–44. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2058-6_22.
Full textStaiger, Ludwig. "Kolmogorov complexity and Hausdorff dimension." In Fundamentals of Computation Theory, 434–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-51498-8_42.
Full textConference papers on the topic "Dimension de Hausdorff"
Antonov, D., and J. E. F. T. Ribeiro. "Hausdorff dimension of quark trajectories from SCSB and confinement." In THE IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM—QCHS IX. AIP, 2011. http://dx.doi.org/10.1063/1.3574989.
Full textTakahashi, H. "Redundancy of universal coding, Kolmogorov complexity, and Hausdorff dimension." In IEEE International Symposium on Information Theory, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isit.2003.1228091.
Full textPestana, Dinis D., Sandra M. Aleixo, and J. Leonel Rocha. "Hausdorff dimension of the random middle third Cantor set." In Proceedings of the ITI 2009 31st International Conference on Information Technology Interfaces (ITI). IEEE, 2009. http://dx.doi.org/10.1109/iti.2009.5196094.
Full textAliyev, A., and A. Jalilov. "Computing Hausdorff Dimension of Invariant Measure of Circle Maps." In 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS). IEEE, 2023. http://dx.doi.org/10.1109/ictacs59847.2023.10390237.
Full textŽUBRINIĆ, DARKO. "HAUSDORFF DIMENSION OF SINGULAR SETS OF SOBOLEV FUNCTIONS AND APPLICATIONS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0076.
Full textMohapatra, Subrajeet, and Dipti Patra. "Automated leukemia detection using hausdorff dimension in blood microscopic images." In 2010 International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT 2010). IEEE, 2010. http://dx.doi.org/10.1109/interact.2010.5706196.
Full textBiswas, Biswajit, Abhishek Dey, and Kashi Nath Dey. "Remote sensing image fusion using Hausdorff fractal dimension in shearlet domain." In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2015. http://dx.doi.org/10.1109/icacci.2015.7275939.
Full textSteffi Vanthana, P., and A. Muthukumar. "Iris authentication using Gray Level Co-occurrence Matrix and Hausdorff Dimension." In 2015 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2015. http://dx.doi.org/10.1109/iccci.2015.7218133.
Full textGui, Yongxin. "Hausdorff Dimension Spectrum of Self-Affine Carpets Indexed by Nonlinear Fibre-Coding." In 2009 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2009. http://dx.doi.org/10.1109/iwcfta.2009.86.
Full textImai, Hiroyuki, Masahiro Kumabe, Kenshi Miyabe, Yuki Mizusawa, and Toshio Suzuki. "Rational Sequences Converging to Left-c.e. Reals of Positive Effective Hausdorff Dimension." In The 9th International Conference on Computability Theory and Foundations of Mathematics. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811259296_0005.
Full text