To see the other types of publications on this topic, follow the link: Dimocarpus longan.

Journal articles on the topic 'Dimocarpus longan'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dimocarpus longan.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mohadi, Risfidian, Normah Normah, Erni Salasia Fitri, and Neza Rahayu Palapa. "Unique Adsorption Properties of Cationic Dyes Malachite Green and Rhodamine-B on Longan (Dimocarpus longan) Peel." Science and Technology Indonesia 7, no. 1 (January 27, 2022): 115–25. http://dx.doi.org/10.26554/sti.2022.7.1.115-125.

Full text
Abstract:
This research converts agricultural waste Longan (Dimocarpus longan) Peel is used in the adsorption process to reduce cationic dyes rhodamine-B and malachite green contaminants from aqueous solution. Longan (Dimocarpus longan) Peel was characterized by FT-IR, analysis XRD, SEM, BET, and TG-DTA. The characterization results show that Longan (Dimocarpus longan) Peel contains cellulose compounds and has a specific surface area 17.175 m2/g, with this Longan (Dimocarpus longan) Peel has the potential as a bio adsorbent. The adsorption capacity is proven by adsorption capacity (Qm) shows that the bioadsorbent adsorption of malachite green has a large adsorption capacity of 182.64 mg/g, while the adsorption capacity of rhodamine-B (Qm) reaches 52.557 mg/g and this bioadsorbent longan (Dimocarpus longan) peel is effective the adsorption was stable until the third cycle.
APA, Harvard, Vancouver, ISO, and other styles
2

Prasad, K., Pallavi Neha, Milan Kumar Lal, and Abhay Kumar Gaurav. "Longan (Dimocarpus longan Lour) Processing: A Review." International Journal of Current Microbiology and Applied Sciences 6, no. 8 (August 10, 2017): 38–44. http://dx.doi.org/10.20546/ijcmas.2017.608.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Xingxun, Changsheng Wang, Liya Liu, Sumei Zhou, and Yongyue Luo. "Rheological properties of the polysaccharide–protein complex from longan (Dimocarpus longan Lour.) pulp." RSC Advances 5, no. 72 (2015): 58663–68. http://dx.doi.org/10.1039/c5ra10926d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Li Juan, Wei Dong Lin, Wu Di Zhang, Fang Yin, Xing Ling Zhao, Jing Liu, Ling Xu, Yu Bao Chen, Shi Qing Liu, and Hong Yang. "Experimental Study on Biogas Production by Mesophilic Fermentation with Dimocarpus Longan Pericarp." Advanced Materials Research 937 (May 2014): 502–7. http://dx.doi.org/10.4028/www.scientific.net/amr.937.502.

Full text
Abstract:
In order to gain the biogas production potential from pericarp of longan (Dimocarpus longan Lour.) fruits, the anaerobic batch fermentation which were divided into the control group (120mL inoculum), the experimental group (120mL inoculum and 15g Dimocarpus longan pericarp) were performed at 30°C.The results indicated that the net biogas production of the experimental group during total fermentation time of 45d was 2455mL. Further, it was calculated that the biogas yield of Dimocarpus longan pericarp was 269mL/g TS or 294mL/g VS.
APA, Harvard, Vancouver, ISO, and other styles
5

Potchanasin, P., K. Sringarm, D. Naphrom, and K. F. Bangerth. "Floral induction in longan (Dimocarpus longan, Lour.) trees." Scientia Horticulturae 122, no. 2 (September 2009): 312–17. http://dx.doi.org/10.1016/j.scienta.2009.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suwardining Tyas, Pining, Dwi Setyati, and Umiyah Umiyah. "Flowering Development of Longan (Dimocarpus longan Lour) ‘Diamond river’." Jurnal ILMU DASAR 14, no. 2 (July 16, 2014): 111. http://dx.doi.org/10.19184/jid.v14i2.635.

Full text
Abstract:
‘Diamond river’ is introduction plant that cultivated in Indonesian. Development of longan flower divided into eight stadium during 28 days. First and second stadium is the induction phase that lasts for 8 days, this phase is characterized by a change in color of the leaves become older by using the Munsell color charts for plant tissues indicate the scale of 7.5 GY (4/4) to GY 7.5 scale (3\2). Third stadium is the phase of flower initiation occurred by day eigth. Initiation stage appearance were showed by merristem axilar, which will form part of primordial flower. Fourth to seventh stadium are phase that a differentiation occurred on day 12 to day 24. Differentiation phase showed the development in suitable with the typical angiosperms are sepals, stamens, petals and pistils. Eighth stadium is the phase of anthesis occurred on day 28. In the phase of anthesis, flowers have undergone a process of pollination and fertilization. Keywords: Development, Diamond river, Flowering, stadium
APA, Harvard, Vancouver, ISO, and other styles
7

JANJAI, S., N. LAMLERT, B. MAHAYOTHEE, B. K. BALA, M. PRECOPPE, and J. MULLER. "Thin Layer Drying of Peeled Longan (Dimocarpus longan Lour.)." Food Science and Technology Research 17, no. 4 (2011): 279–88. http://dx.doi.org/10.3136/fstr.17.279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HO, VIET THE, and QUOC NGUYEN NGO. "Short Communication: Using RAPD technique to evaluate genetic diversity of longan (Dimocarpus longan) population in Vietnam." Biodiversitas Journal of Biological Diversity 18, no. 4 (October 7, 2017): 1632–37. http://dx.doi.org/10.13057/biodiv/d180442.

Full text
Abstract:
Ho VT, Ngo QNg. 2017. Short Communication: Using RAPD technique to evaluate genetic diversity of longan (Dimocarpus longan) population in Vietnam. Biodiversitas 18: xxxx. Longan (Dimocarpus longan L.) is an important fruit plant in Vietnam where several cultivars and landraces are being cultivated. Presently, the identification of longan cultivars and landraces is mainly based on personal experience relying on morphological traits leading the difficulty of genetic conservation and longan breeding. In this study, genetic richness and relativeness of 36 longan accessions collected from different provinces in Vietnam were evaluated by using 30 Random Amplified Polymorphic DNA (RAPD) primers. Our results reveal that there is the large variation of genetic background of studied longan accessions with separate groups in the obtained dendrogram. We also identified the combination of different RAPD markers could help to identify 15 longan genotypes. The results from this project could provide valuable information which is necessary for classifying, identifying plant origins, breeding and conserving programs of longan in Vietnam.
APA, Harvard, Vancouver, ISO, and other styles
9

Jiang, Yueming, Zhaoqi Zhang, Daryl C. Joyce, and Saichol Ketsa. "Postharvest biology and handling of longan fruit (Dimocarpus longan Lour.)." Postharvest Biology and Technology 26, no. 3 (November 2002): 241–52. http://dx.doi.org/10.1016/s0925-5214(02)00047-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jaroenkit, T., S. Ussahatanonta, S. Thamjumrat, and C. Sritontip. "DETERMINATION OF LONGAN (DIMOCARPUS LONGAN 'DAW') BASELINE TEMPERATURE IN THAILAND." Acta Horticulturae, no. 1029 (April 2014): 163–68. http://dx.doi.org/10.17660/actahortic.2014.1029.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Hao, Yan-zhen Liu, Shao-quan Zheng, Ji-mou Jiang, Ping Wang, and Wei Chen. "Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion." Planta 231, no. 4 (January 5, 2010): 847–60. http://dx.doi.org/10.1007/s00425-009-1093-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tiyayon, P., M. Hegele, J. N. Wünsche, K. Pongsriwat, P. Sruamsiri, and A. Samach. "STUDIES ON THE MOLECULAR BASIS OF FLOWERING IN LONGAN (DIMOCARPUS LONGAN)." Acta Horticulturae, no. 903 (August 2011): 979–85. http://dx.doi.org/10.17660/actahortic.2011.903.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pham, V. T., M. Herrero, and J. I. Hormaza. "Fruiting pattern in longan,Dimocarpus longan: from pollination to aril development." Annals of Applied Biology 169, no. 3 (July 11, 2016): 357–68. http://dx.doi.org/10.1111/aab.12306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fang, T., J. Q. Chen, and H. Peppelenbos. "QUALITY CHANGES OF FRESH LONGAN (DIMOCARPUS LONGAN) UNDER DIFFERENT STORAGE CONDITIONS." Acta Horticulturae, no. 863 (May 2010): 593–98. http://dx.doi.org/10.17660/actahortic.2010.863.83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Janjai, S., P. Intawee, K. Tohsing, B. Mahayothee, B. K. Bala, M. A. Ashraf, and J. Müller. "Neural network modeling of sorption isotherms of longan (Dimocarpus longan Lour.)." Computers and Electronics in Agriculture 66, no. 2 (May 2009): 209–14. http://dx.doi.org/10.1016/j.compag.2009.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rangkadilok, Nuchanart, Songsak Tongchusak, Rachasak Boonhok, Sansanee C. Chaiyaroj, Varaporn B. Junyaprasert, Waranun Buajeeb, Jaratluck Akanimanee, Thida Raksasuk, Theeralaksna Suddhasthira, and Jutamaad Satayavivad. "In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract." Fitoterapia 83, no. 3 (April 2012): 545–53. http://dx.doi.org/10.1016/j.fitote.2011.12.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Boonsuk, Boonchuang, and Pranom Chantaranothai. "Notes on the Dimocarpus longan (Sapindaceae) Complex." Novon: A Journal for Botanical Nomenclature 25, no. 2 (April 13, 2017): 134–38. http://dx.doi.org/10.3417/d-16-00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matsumoto, Kazumitsu, Simon Hadi Teguh Raharjo, Sadanand Dhekney, Pamela April Moon, and Richard Earle Litz. "Criopreservação e embriogênese somática de calos de Dimocarpus longan." Pesquisa Agropecuária Brasileira 39, no. 12 (December 2004): 1261–63. http://dx.doi.org/10.1590/s0100-204x2004001200014.

Full text
Abstract:
Os objetivos deste trabalho foram avaliar os efeitos de crioprotetores na criopreservação e da sacarose na embriogênise somática de calos de Dimocarpus longan. Após degelo os calos foram cultivados em meio de multiplicação, e a massa da matéria fresca foi determinada. Para se obter os embriões somáticos, calos e massas pro-embriônicas foram transferidos para meio de cultura contendo diferentes concentrações de sacarose. Entre os crioprotetores, a mistura de 5% de glicerol + 5% de dimetilsulfóxido proporcionou a maior quantidade de massa fresca dos calos. O maior número de embriões foi obtido no meio de cultura com 50 g L-1 de sacarose. Os resultados mostram que calos de Dimocarpus longan podem ser criopreservados e plântulas podem ser obtidas.
APA, Harvard, Vancouver, ISO, and other styles
19

Ho, Viet The, and Quoc Nguyen Ngo. "Development of SCAR makers for longan (Dimocarpus longan L.) authentication in Vietnam." BioTechnologia 99, no. 4 (2018): 401–7. http://dx.doi.org/10.5114/bta.2018.79970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kaewsuksaeng, S., A. Uthairattanakij, V. Srilaong, and S. Kanlayanarat. "HIGH O2 EFFECTS ON PHYSIOLOGICAL CHANGES IN LONGAN (DIMOCARPUS LONGAN LOUR.) FRUITS." Acta Horticulturae, no. 804 (December 2008): 527–30. http://dx.doi.org/10.17660/actahortic.2008.804.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yi, Yang, Sen-Tai Liao, Ming-Wei Zhang, Rui-Fen Zhang, Yuan-Yuan Deng, Bao Yang, and Zhen-Cheng Wei. "Immunomodulatory Activity of Polysaccharide-Protein Complex of Longan (Dimocarpus longan Lour.) Pulp." Molecules 16, no. 12 (December 13, 2011): 10324–36. http://dx.doi.org/10.3390/molecules161210324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Prasad, K. Nagendra, Bao Yang, Mouming Zhao, Xiaoyi Wei, Yueming Jiang, and Feng Chen. "High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp." Separation and Purification Technology 70, no. 1 (November 2009): 41–45. http://dx.doi.org/10.1016/j.seppur.2009.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

McConchie, C. "Intergeneric Hybridisation between Litchi (Litchi chinensis Sonn.) and Longan (Dimocarpus longan Lour.)." Annals of Botany 74, no. 2 (August 1994): 111–18. http://dx.doi.org/10.1006/anbo.1994.1100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pham, V. T., M. Herrero, and J. I. Hormaza. "Phenological growth stages of longan (Dimocarpus longan) according to the BBCH scale." Scientia Horticulturae 189 (June 2015): 201–7. http://dx.doi.org/10.1016/j.scienta.2015.03.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hsieh, Meng-Chieh, Yi-Jane Shen, Yueh-Hsiung Kuo, and Lucy Sun Hwang. "Antioxidative Activity and Active Components of Longan (Dimocarpus longan Lour.) Flower Extracts." Journal of Agricultural and Food Chemistry 56, no. 16 (August 2008): 7010–16. http://dx.doi.org/10.1021/jf801155j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Zhen Hong, Qiao Min Wang, and Ying Ming Pan. "Study on the Antioxidant Compounds Extracted from Longan (Dimocarpus longan Lour.) Shell." Asian Journal of Chemistry 26, no. 15 (2014): 4602–4. http://dx.doi.org/10.14233/ajchem.2014.16130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kaewsuksaeng, S., A. Uthairatanakij, and S. Kanlayanarat. "PHYSIOLOGICAL CHANGES IN LONGAN (DIMOCARPUS LONGAN LOUR.) FRUIT DURING CONTROLLED ATMOSPHERE STORAGE." Acta Horticulturae, no. 857 (April 2010): 401–4. http://dx.doi.org/10.17660/actahortic.2010.857.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Traisuwan, N., C. Kammak, W. Chintakovid, and A. Pichakum. "Effect of hot wind on annual growth of longan (Dimocarpus longan Lour.)." Acta Horticulturae, no. 1293 (October 2020): 225–30. http://dx.doi.org/10.17660/actahortic.2020.1293.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yang, Bao, Yueming Jiang, Mouming Zhao, Feng Chen, Rui Wang, Yulong Chen, and Dandan Zhang. "Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp." Food Chemistry 115, no. 2 (July 2009): 609–14. http://dx.doi.org/10.1016/j.foodchem.2008.12.082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pan, Yingming, Kai Wang, Siqin Huang, Hengshan Wang, Xiaomei Mu, Chunhuan He, Xiaowen Ji, Jie Zhang, and Fujuan Huang. "Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel." Food Chemistry 106, no. 3 (February 2008): 1264–70. http://dx.doi.org/10.1016/j.foodchem.2007.07.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Xingxun, Yongyue Luo, Chunjie Zha, Sumei Zhou, Liya Liu, and Lei Zhao. "Rheological Properties of Polysaccharides from Longan (Dimocarpus longanLour.) Fruit." International Journal of Polymer Science 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/168064.

Full text
Abstract:
Longan polysaccharide (LP) was extracted from longan (Dimocarpus longanLour.) pulp. The composition and rheological properties were determined by chemical analysis and dynamic shear rheometer. The flow behavior and viscoelastic behavior of longan polysaccharide (LP) solution were investigated by steady shear and small amplitude oscillatory shear (SAOS) experiments, respectively. The result shows that the solution is a pseudoplastic flow in a range of shear rate (1–100 s−1). The rheological behavior of LP was influenced by cations such as Na+and Ca2+. With an increase of apparent viscosity,G′andG′′were accompanied by addition of Na+and Ca2+.
APA, Harvard, Vancouver, ISO, and other styles
32

Xue, Yongmei, Wenjing Wang, Yujiao Liu, Rui Zhan, and Yegao Chen. "Two new flavonol glycosides from Dimocarpus longan leaves." Natural Product Research 29, no. 2 (October 17, 2014): 163–68. http://dx.doi.org/10.1080/14786419.2014.971318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tandra, Titania Aurely, Sabrina Khairunissa, Mellisa Sim, and Florenly Florenly. "Efek Penambahan Nanokitosan 1% Kedalam Berbagai Konsentrasi Ekstrak Kulit Kelengkeng Streptococcus Mutans." Jurnal Ilmiah Kesehatan Sandi Husada 11, no. 1 (June 30, 2020): 403–12. http://dx.doi.org/10.35816/jiskh.v11i1.313.

Full text
Abstract:
Kulit Kelengkeng (Dimocarpus longan Lour) mengandung senyawa flavonoid, glikosida, saponin dan tannin, sehingga memiliki kapasitas antibakteri.Nanokitosan 1% yang dicampurkan ke dalam ekstrak tumbuhan mampu meningkatkan daya hambat pertumbuhan bakteri di rongga mulut. Penelitian ini bertujuan untuk membandingkan efektivitas ekstrak kulit kelengkeng (Dimocarpus longan Lour) yang ditambahkan nanokitosan 1% dalam menghambat Streptococcusmutans pada berbagai konsentrasi, yaitu 40%, 60% dan 80%. Pembuatan ekstrak kulitkelengkeng dilakukan dengan metode maserasi dan dibuat dengan konsentrasi 40%, 60% dan 80%. Sedangkan nanokitosan 1% dibuat dengan metode gelas ionik. Kedua bahan dicampur dalam rasio 1:1, dan diuji efektivitas daya hambatnya dengan metode difusi cakram. Hasil penelitian menunjukkan nilai mean dan standar deviasi ekstrak kulit kelengkeng pada konsentrasi 40%, 60% dan 80% dengan nanokitosan 1% adalah 6,86 ± 0,471 mm; 7,62 ± 0,533 mm dan 8,53 ± 0,395 mm. Daya hambat dengan diameter >7 mm menunjukkan antibakteri kekuatan sedang. Uji Shapiro-Wilk membuktikan bahwa data terdistribusi normal. Hasil analisis statistik dengan one way Analysis of Variance (ANOVA) menunjukkan ekstrak kulit kelengkeng (Dimocarpus longan Lour) dicampurkan dengan nanokitosan 1% paling efektif dalam menghambat Streptococcus mutans pada konsentrasi 80%, di mana p = 0,000 (0<0,05). Hal ini disebabkan adanya peningkatan konsentrasi senyawa fitokimia
APA, Harvard, Vancouver, ISO, and other styles
34

Mai, Jiani, Jie Liang, XianFu Liu, LiuPing Tan, Hui Xu, YaoHua Li, YuShan Zhou, ChuanChuan Yang, and ChenXi Xin. "Simultaneous Determination of 5 Components in the Leaves of Dimocarpus longan by Quantitative Analysis of Multicomponents by Single Marker (QAMS) Based on UPLC and HPLC." Journal of Analytical Methods in Chemistry 2020 (January 29, 2020): 1–9. http://dx.doi.org/10.1155/2020/3950609.

Full text
Abstract:
The pharmacodynamic effect of longan leaves was attributed to various components, especially the flavonoids. In this paper, a new strategy of quantitative analysis of multicomponents by a single marker (QAMS) method was first established to synchronously determine 5 components (ethyl gallate (C1), astragalin (C2), quercetin (C3), luteolin (C4), and kaempferol (C5)) in Dimocarpus longan by ultra-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC). Quercetin (C3) was chosen as the internal reference. Relative correction factors (RCFs, ƒs/i) of the other 4 components were calculated by two correction methods (multipoint correction and slope correction) to effectuate QAMS. At the same time, the difference between the results measured by the QAMS and external standard methods was compared to verify the accuracy of QAMS. Within the linear range, the results showed that all ƒs/i values were obtained with good durability under diverse chromatographic conditions (RSD < 2.28%). The quantitative results of 5 components in the leaves of Dimocarpus longan collected from 10 producing areas by different chromatographic systems and quantitative methods were significantly correlated (Pearson’s r > 97.0%). The applicability and feasibility of the QAMS method established in this study were evaluated to be favorable for quality control of the leaves of Dimocarpus longan. As a new model of quality control, it can provide one more choice of multicomponent quality-control method in the absence of standard substances or instruments.
APA, Harvard, Vancouver, ISO, and other styles
35

Zheng, Wei, Xueming Dong, Qiuying Zhang, Xuefei Yu, Wenlan Li, Yubin Ji, and Ning Chen. "Identification and characterization of MYB genes in Dimocarpus longan Lour." Bangladesh Journal of Botany 49, no. 1 (March 31, 2020): 97–104. http://dx.doi.org/10.3329/bjb.v49i1.49100.

Full text
Abstract:
The MYB gene family is one of the most widespread plant transcription factor (TF) families, and MYB TFs play key roles in plant development, hormone signal transduction, disease resistance, abiotic stress tolerance and secondary metabolism. Recently, many MYBs have been characterized in various plants. However, little is known about the MYBs involved in secondary metabolite biosynthesis in Dimocarpus longan Lour. (D. longan). Based on transcriptome data profiling (Accession number: SRP155595), 35 MYBs from D. longan (DlMYBs) were identified. On the basis of their physicochemical properties, phylogenetic relationships, conserved motifs, and tissue-specific expression profiles these Dimocarpus longan MYBs (DlMYBs) were analyzed. Fifteen motifs in DlMYBs using MEME were found and a phylogenetic tree analysis showed that the DlMYBs identified here were divided into three groups. Group A contained the greatest number (25) of DlMYBs, followed by group B (6) and group C (4). Quantitative real time PCR (qRT-PCR) analysis demonstrated that, of the 35 MYBs studied DlMYB-12 and DlMYB-22 showed large differences in tissue-specific expression, with both MYBs showing very high expression in leaf tissue. These results lay the foundation for further studies of the biosynthesis of secondary metabolites in D. longan and further highlight the importance of MYB TFs in plants.
APA, Harvard, Vancouver, ISO, and other styles
36

Tseng, Huang-Chung, Wan-Ting Wu, Ho-Shin Huang, and Ming-Chang Wu. "Antimicrobial activities of various fractions of longan (Dimocarpus longan Lour.Fen Ke) seed extract." International Journal of Food Sciences and Nutrition 65, no. 5 (February 17, 2014): 589–93. http://dx.doi.org/10.3109/09637486.2014.886181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gupta, Alok Kumar, Manvendra Singh, Evening S. Marboh, Vishal Nath, Alemwati Pongener, and A. K. D. Anal. "Pollen Quantity, Viability and in vitro Pollen Germination of Longan (Dimocarpus longan Lour.)." International Journal of Current Microbiology and Applied Sciences 6, no. 7 (July 10, 2017): 270–78. http://dx.doi.org/10.20546/ijcmas.2017.607.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shi, S. Y., W. C. Li, H. N. Zhang, L. Q. Liu, B. Shu, Q. Z. Liang, J. H. Xie, and Y. Z. Wei. "Application of extendedBiologische Bundesantalt,BundessortenamtandChemische Industriescale for phenological studies in longan (Dimocarpus longan)." Annals of Applied Biology 167, no. 1 (March 31, 2015): 127–34. http://dx.doi.org/10.1111/aab.12214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jesus, Natanael de, Antonio Baldo Geraldo Martins, and José Carlos Barbosa. "Desenvolvimento de frutos de Longan (Dimocarpus longan lour) na região de Jaboticabal-SP." Revista Brasileira de Fruticultura 30, no. 1 (March 2008): 159–64. http://dx.doi.org/10.1590/s0100-29452008000100029.

Full text
Abstract:
O presente estudo teve por objetivo avaliar o desenvolvimento de frutos de plantas de longan (Dimocarpus longan Lour) na região de Jaboticabal, estabelecendo-se, portanto, a curva de crescimento dos frutos. As avaliações realizadas foram semanais, consistindo em medições do diâmetro longitudinal e transversal dos frutos marcados, a partir do momento da formação da polpa. Quinzenalmente, realizaram-se avaliações de características físicas: massa de fruto (g), casca (g), polpa (g) semente (g), e químicas: acidez titulável (AT), sólidos solúveis (SS), ácido ascórbico (AA) e ratio (SS/AT). Com os resultados obtidos, pode-se concluir que o ciclo de frutificação da Longan na região é entre 120 e 130 dias após antese, período em que o fruto estaria apto para o consumo. A curva do desenvolvimento dos frutos segue um padrão sigmoidal simples. Com relação aos atributos físicos e químicos, constatou-se que a planta 6 apresentou os melhores resultados, podendo ser recomendada como planta-matriz.
APA, Harvard, Vancouver, ISO, and other styles
40

Phimphilai, S., S. Maimamuang, and K. Phimphilai. "APPLICATION OF ULTRAVIOLET RADIATION IN THE DRYING PROCESS OF LONGAN (DIMOCARPUS LONGAN 'DAW')." Acta Horticulturae, no. 1029 (April 2014): 385–91. http://dx.doi.org/10.17660/actahortic.2014.1029.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jia, Tianqi, Danfeng Wei, Shan Meng, Andrew C. Allan, and Lihui Zeng. "Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus longan L.)." PLoS ONE 9, no. 12 (December 5, 2014): e114568. http://dx.doi.org/10.1371/journal.pone.0114568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Guoming, Jian Sun, Xuemei He, Yayuan Tang, Jiemin Li, Dongning Ling, Changbao Li, et al. "Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine." Food Chemistry 256 (August 2018): 268–79. http://dx.doi.org/10.1016/j.foodchem.2018.02.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Xiaofang, Sen Guo, Chi-Tang Ho, and Naisheng Bai. "Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: a review." Food Science and Human Wellness 9, no. 2 (June 2020): 95–102. http://dx.doi.org/10.1016/j.fshw.2020.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Marboh, E. S., Abhay Kumar, A. K. Gupta, A. Pongener, J. P. Verma, and V. Nath. "Variation in seed germination and seedling development among longan genotpyes (Dimocarpus longan Lour)." Progressive Horticulture 53, no. 1 (2021): 23–29. http://dx.doi.org/10.5958/2249-5258.2021.00003.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, H. N., S. Y. Shi, W. C. Li, B. Shu, L. Q. Liu, J. H. Xie, and Y. Z. Wei. "Transcriptome analysis of ‘Sijihua’ longan (Dimocarpus longanL.) based on next-generation sequencing technology." Journal of Horticultural Science and Biotechnology 91, no. 2 (February 17, 2016): 180–88. http://dx.doi.org/10.1080/14620316.2015.1133539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hu, Ziman, Lei Zhao, Zhuoyan Hu, and Kai Wang. "Hierarchical Structure, Gelatinization, and Digestion Characteristics of Starch from Longan (Dimocarpus longan Lour.) Seeds." Molecules 23, no. 12 (December 10, 2018): 3262. http://dx.doi.org/10.3390/molecules23123262.

Full text
Abstract:
Starch was isolated from longan seeds of three widely distributed cultivars (Chuliang, Shixia, and Caopu) in China. Comparisons of the multi-level structure of the starch of longan seeds among various cultivars were made, and the relations between these structural and property characteristics are discussed. The isolated starch, accounting for 44.9–49.5% (w/w) in longan seeds, had an oval or an irregular polygonal shape with a smooth surface. Their chain-length distributions (CLDs) varied with longan cultivar; Chuliang showed a larger proportion of longer amylopectin chains with a degree of polymerization (DP) 30~100. This is attributed to the slightly higher relative crystallinity of Chuliang longan seed starch. Apparent differences were also detected in amylose structure. Caopu showed a higher amylose content than Chuliang and Shixia, resulting in its lower gelatinization temperatures and enthalpy change. All longan seed starch had a typical A-type crystal structure with relative crystallinity ranging 28.6–28.9%. For raw starch, Caopu showed the lowest digestion rate, followed by Chuliang; Shixia showed the highest. This is because Caopu had the highest amylose content. Chuliang had a more intact structure than Shixia, as suggested by its higher crystallinity, although they had similar amylose content. After being fully gelatinized, all starch showed a similar digestion process, indicating that the digestibility of gelatinized starch does not differ with starch source or structure.
APA, Harvard, Vancouver, ISO, and other styles
47

Zheng, Gongming, Xiaoyi Wei, Liangxiong Xu, Zhongjun Li, Gangyong Liu, and Xiance Zhang. "A New Natural Lactone from Dimocarpus longan Lour. Seeds." Molecules 17, no. 8 (August 6, 2012): 9421–25. http://dx.doi.org/10.3390/molecules17089421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Laga, Suriana, Saiman Sutanto, Fatmawati Fatmawati, Abd Halik, and Aylee Christine Alamsyah Sheyoputri. "Penggunaan Edible Coating Dalam Pengawaten Buah Kelengkeng Dimocarpus longan Lour." Jurnal Ilmiah Ecosystem 21, no. 2 (August 29, 2021): 374–82. http://dx.doi.org/10.35965/eco.v21i2.1126.

Full text
Abstract:
Masalah yang sering muncul pada buah-buahan adalah adalah cepatnya mengalami kerusakan karena proses respirasi dan transpirasi sehingga akan memperpendek umur simpan. Salah satu upaya memperpanjang kesegaran buah Kelengkeng dengan pemakaian Edible Coating. Penelitian ini bertujuan untuk mengetahui kemampuan Edible Coating sebagai pengemas buah Kelengkeng selama penyimpanan. Perlakuan penelitian terdiri atas aplikasi Edible Coating (Kontrol) dan lama penyimpanan (1 hari, 2 hari, 3 hari, 4 hari, 5 hari dan 6 hari). Parameter yang diamati adalah susut berat, kadar air dan warna. Rancangan percobaan yang digunakan adalah rancangan acak lengkap pola faktorial dengan dua kali ulangan. Pengaruh perlakuan aplikasi Edible Coating dan lama penyimpanan berpengaruh sangat nyata terhadap susut berat, kadar air dan warna buah Kelengkeng. Penggunaan Edible Coating sebagai pelapis mampu mengurangi susut berat buah Kelengkeng, mempertahankan kadar air dan warna buah Kelengkeng selama penyimpanan. The problem that often arises in fruits is that they are quickly damaged due to the respiration and transpiration processes so that they will shorten their shelf life. One of the efforts to extend the freshness of Longan fruit is by using Edible Coating. This study aims to determine the ability of Edible Coating as a packaging for longan fruit during storage. The research treatment consisted of Edible Coating application (Control) and storage time (1 day, 2 days, 3 days, 4 days, 5 days and 6 days). Parameters observed were weight loss, moisture content and color. The experimental design used was a completely randomized design with a factorial pattern with two replications. The effect of Edible Coating application treatment and storage time had a very significant effect on weight loss, moisture content and color of Longan fruit. The use of Edible Coating as a coating is able to reduce the weight loss of longan fruit, maintain water content and color of longan fruit during storage
APA, Harvard, Vancouver, ISO, and other styles
49

Qu, H. X., C. Yi, J. Li, X. W. Duan, Y. B. Li, and Y. M. Jiang. "CHLOROPHYLL FLUORESCENCE AS A TOOL TO EVALUATE SENESCENCE OF LONGAN (DIMOCARPUS LONGAN LOUR.) FRUIT." Acta Horticulturae, no. 804 (December 2008): 197–202. http://dx.doi.org/10.17660/actahortic.2008.804.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tang, Ya-Yuan, Xue-Mei He, Jian Sun, Chang-Bao Li, Li Li, Jin-Feng Sheng, Ming Xin, et al. "Polyphenols and Alkaloids in Byproducts of Longan Fruits (Dimocarpus Longan Lour.) and Their Bioactivities." Molecules 24, no. 6 (March 26, 2019): 1186. http://dx.doi.org/10.3390/molecules24061186.

Full text
Abstract:
The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography