Academic literature on the topic 'Diophantine equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diophantine equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diophantine equation"

1

G, Janaki, and Gowri Shankari A. "(Exponential Diophantine Equation n2􀀀1 )u +n2v = w2;n = 2;3;4;5." Indian Journal of Science and Technology 17, no. 2 (2024): 166–70. https://doi.org/10.17485/IJST/v17i2.2544.

Full text
Abstract:
Abstract <strong>Objectives:</strong>&nbsp;Diophantine research focuses on various ways to tackle multivariable and multidegree Diophantine problems. A Diophantine equation is a polynomial equation with only integer solutions. The objective of this manuscript is to find the solutions to a few exponential Diophantine equations and . Also generalize the Exponential equation , and of the form and explore that it has at least one solution as .<strong>&nbsp;Methods:</strong>&nbsp;Diophantine equations may have finite, infinite or no solutions in integers. There is no universal method for finding so
APA, Harvard, Vancouver, ISO, and other styles
2

Sankari, Hasan, and Mohammad Abobala. "On The Group of Units Classification In 3-Cyclic and 4-cyclic Refined Rings of Integers And The Proof of Von Shtawzens' Conjectures." International Journal of Neutrosophic Science 21, no. 4 (2023): 146–54. http://dx.doi.org/10.54216/ijns.210414.

Full text
Abstract:
First Von Shtawzen's Diophantine equation is a non-linear Diophantine equation with three variables . This equation has been conjectured that it has a finite number of integer solutions, and this number of solutions is divisible by 6. Second Von Shtawzen's Diophantine equation is a non-linear Diophantine equation with four variables. This equation has been conjectured that it has a finite number of integer solutions, and this number of solutions is divisible by 8. In this paper, we prove that first Von Shtawzen's conjecture is true, where we show that first Von Shtawzen's Diophantine equations
APA, Harvard, Vancouver, ISO, and other styles
3

Aggarwal, S., and S. Kumar. "On the Exponential Diophantine Equation (132m) + (6r + 1)n = z2." Journal of Scientific Research 13, no. 3 (2021): 845–49. http://dx.doi.org/10.3329/jsr.v13i3.52611.

Full text
Abstract:
Nowadays, mathematicians are very interested in discovering new and advanced methods for determining the solution of Diophantine equations. Diophantine equations are those equations that have more unknowns than equations. Diophantine equations appear in astronomy, cryptography, abstract algebra, coordinate geometry and trigonometry. Congruence theory plays an important role in finding the solution of some special type Diophantine equations. The absence of any generalized method, which can handle each Diophantine equation, is challenging for researchers. In the present paper, the authors have d
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Yi, and Zheng Ping Zhang. "The Positive Integer Solutions of a Diophantine Equation." Applied Mechanics and Materials 713-715 (January 2015): 1483–86. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1483.

Full text
Abstract:
In this paper, we studied the positive integer solutions of a typical Diophantine equation starting from two basic equations including a Diophantine equation and a Pell equation, and we will prove all the positive integer solutions of the typical Diophantine equation.
APA, Harvard, Vancouver, ISO, and other styles
5

Sathiyapriya, R., та M. A. Gopalan. "Homogeneous Quadratic Equation with Four Unknowns 𝑥2 + 𝑥𝑦 + 𝑦2 = 𝑧2 + 𝑧𝑤 + 𝑤2". Indian Journal Of Science And Technology 17, № 27 (2024): 2841–47. http://dx.doi.org/10.17485/ijst/v17i27.1710.

Full text
Abstract:
Objectives: Diophantine research focuses on various ways to tackle multi variable and multi-degree Diophantine problems. A Diophantine equation is a polynomial equation with only integer solutions. The objective of this manuscript is to find the solutions to Polynomial Diophantine equation . Methods: Diophantine equations may have finite, infinite, or no solutions in integers. There is no universal method for finding solutions to Diophantine equations. Different choice of solutions in integers is obtained through using linear transformations and employing the factorization method. Findings: Ma
APA, Harvard, Vancouver, ISO, and other styles
6

R, Sathiyapriya, та A. Gopalan M. "Homogeneous Quadratic Equation with Four Unknowns 𝑥2 + 𝑥𝑦 + 𝑦2 = 𝑧2 + 𝑧𝑤 + 𝑤2". Indian Journal of Science and Technology 17, № 27 (2024): 2841–47. https://doi.org/10.17485/IJST/v17i27.1710.

Full text
Abstract:
Abstract <strong>Objectives:</strong>&nbsp;Diophantine research focuses on various ways to tackle multi variable and multi-degree Diophantine problems. A Diophantine equation is a polynomial equation with only integer solutions. The objective of this manuscript is to find the solutions to Polynomial Diophantine equation .<strong>&nbsp;Methods:</strong>&nbsp;Diophantine equations may have finite, infinite, or no solutions in integers. There is no universal method for finding solutions to Diophantine equations. Different choice of solutions in integers is obtained through using linear transforma
APA, Harvard, Vancouver, ISO, and other styles
7

Kaleeswari, K., J. Kannan, A. Deepshika, and M. Mahalakshmi. "Computations of Exponential Diophantine Rectangles over Gnomonic Numbers using Python." Indian Journal Of Science And Technology 17, no. 42 (2024): 4449–53. http://dx.doi.org/10.17485/ijst/v17i42.3491.

Full text
Abstract:
Objective: The main objective of this paper is to define and collect a new type of rectangle called the Exponential Diophantine Rectangle over Gnomonic numbers (figurate numbers that take the form 𝑛2 − (𝑛 − 1)2, 𝑛 ∈ 𝑁). Methods: It is done by solving the two exponential Diophantine equations using Mihailescu’s theorem, binomial expansion, and the basic theory of congruences. Findings: Here, it is proven that there are only four exponential Diophantine rectangles over Gnomonic numbers. Finally, it is validated using Python programming for a specific limit. Novelty: The concept of solving an exp
APA, Harvard, Vancouver, ISO, and other styles
8

Biswas, D. "Does the Solution to the Non-linear Diophantine Equation 3<sup>x</sup>+35<sup>y</sup>=Z<sup>2</sup> Exist?" Journal of Scientific Research 14, no. 3 (2022): 861–65. http://dx.doi.org/10.3329/jsr.v14i3.58535.

Full text
Abstract:
This paper investigates the solutions (if any) of the Diophantine equation 3x + 35y = Z2, where , x, y, and z are whole numbers. Diophantine equations are drawing the attention of researchers in diversified fields over the years. These are equations that have more unknowns than a number of equations. Diophantine equations are found in cryptography, chemistry, trigonometry, astronomy, and abstract algebra. The absence of any generalized method by which each Diophantine equation can be solved is a challenge for researchers. In the present communication, it is found with the help of congruence th
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Imin. "A Diophantine Equation Associated to X0(5)." LMS Journal of Computation and Mathematics 8 (2005): 116–21. http://dx.doi.org/10.1112/s1461157000000929.

Full text
Abstract:
AbstractSeveral classes of Fermat-type diophantine equations have been successfully resolved using the method of galois representations and modularity. In each case, it is possible to view the proper solutions to the diophantine equation in question as corresponding to suitably defined integral points on a modular curve of level divisible by 2 or 3. Motivated by this point of view, an example of a diophantine equation associated to the modular curve X0(5) is discussed in this paper. The diophantine equation has four terms rather than the usual three terms characteristic of generalized Fermat e
APA, Harvard, Vancouver, ISO, and other styles
10

Maran, A. K. "A Simple Solution for Diophantine Equations of Second, Third and Fourth Power." Mapana - Journal of Sciences 4, no. 1 (2005): 96–100. http://dx.doi.org/10.12723/mjs.6.17.

Full text
Abstract:
We know already that the set Of positive integers, which are satisfying the Pythagoras equation Of three variables and four variables cre called Pythagorean triples and quadruples respectively. These cre Diophantine equation OF second power. The all unknowns in this Pythagorean equation have already Seen by mathematicians Euclid and Diophantine. Hcvwever the solution defined by Euclid are Diophantine is also again having unknowns. The only to solve the Diophantine equations wos and error method. Moreover, the trial and error method to obtain these values are not so practical and easy especiall
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Diophantine equation"

1

Bartolomé, Boris. "Diophantine equations and cyclotomic fields." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0104/document.

Full text
Abstract:
Cette thèse examine quelques approches aux équations diophantiennes, en particulier les connexions entre l’analyse diophantienne et la théorie des corps cyclotomiques.Tout d’abord, nous proposons une introduction très sommaire et rapide aux méthodes d’analyse diophantienne que nous avons utilisées dans notre travail de recherche. Nous rappelons la notion de hauteur et présentons le PGCD logarithmique.Ensuite, nous attaquons une conjecture, formulée par Skolem en 1937, sur une équation diophantienne exponentielle. Pour cette conjecture, soit K un corps de nombres, α1 ,…, αm , λ1 ,…, λm des élém
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Ai. "Embedded Surface Attack on Multivariate Public Key Cryptosystems from Diophantine Equation." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1558364211159262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weeman, Glenn Steven. "A Diophantine Equation for the Order of Certain Finite Perfect Groups." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1396902470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rahimi, Shahriar. "A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER STRUCTURED PEER-TO-PEER NETWORK." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1462.

Full text
Abstract:
This research focuses on introducing a novel concept to design a scalable, hierarchical interest-based overlay Peer-to-Peer (P2P) system. We have used Linear Diophantine Equation (LDE) as the mathematical base to realize the architecture. Note that all existing structured approaches use Distributed Hash Tables (DHT) and Secure Hash Algorithm (SHA) to realize their architectures. Use of LDE in designing P2P architecture is a completely new idea; it does not exist in the literature to the best of our knowledge. We have shown how the proposed LDE-based architecture outperforms some of the most we
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Jason. "Solvability characterizations of Pell like equations." [Boise, Idaho] : Boise State University, 2009. http://scholarworks.boisestate.edu/td/55/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Синиця, О. "Методи розв'язування діофантових рівнянь". Thesis, Cумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/48885.

Full text
Abstract:
Розв’язок рівнянь в цілих числах є однією з стародавніх математичних задач. Основне джерело, яке дійшло до наших часів – видання праці Діофанта «Арифметика». На жаль, з тринадцяти книг, що входили до цього видання, тільки шість збереглися до Середніх віків, саме вони і стали джерелом натхнення для багатьох математиків.
APA, Harvard, Vancouver, ISO, and other styles
7

Maximenko, Marianna. "Contribution au calcul de la solution générale d'équations en mots." Rouen, 1995. http://www.theses.fr/1995ROUE5003.

Full text
Abstract:
Le problème central de la thèse est d'effectuer les recherches du calcul de la solution générale d'équations en mots, donnée sous la forme d'un ensemble fini de collections paramétrées de solutions. Ce projet a été proposé par G. S. Makanin. Nous avons proposé dans ce travail un algorithme quasi linéaire du calcul de la solution générale de l'équation en mots à une variable avec des coefficients. Nous avons décrit la solution générale de l'équation miroir sous la forme des mots à vecteurs. En introduisant la notion d'invariant de Makanin, nous avons obtenu la caractéristique du graphe de l'équ
APA, Harvard, Vancouver, ISO, and other styles
8

Валенкевич, М. Є. "Діофантові рівняння". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/38857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wellstead, Kevin. "Robust polynomial controller design." Thesis, Brunel University, 1991. http://bura.brunel.ac.uk/handle/2438/4866.

Full text
Abstract:
The work presented in this thesis was motivated by the desire to establish an alternative approach to the design of robust polynomial controllers. The procedure of pole-placement forms the basis of the design and for polynomial systems this generally involves the solution of a diophantine equation. This equation has many possible solutions which leads directly to the idea of determining the most appropriate solution for improved performance robustness. A thorough review of many of the aspects of the diophantine equation is presented, which helps to gain an understanding of this extremely impor
APA, Harvard, Vancouver, ISO, and other styles
10

Опарій, О. С. "Застосування генетичного алгоритму до розв'язання діафантових рівнянь". Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/40956.

Full text
Abstract:
У даній роботі розглядається застосування генетичного алгоритму до розв’язання діафантового рівняння першого порядку. Генетичні алгоритми є потужним обчислювальним засобом для різних оптимізаційних задач. Ці алгоритми застосовуються у найрізноманітніших галузях: економіці, фізиці, технічних науках і т.п.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Diophantine equation"

1

C, Williams Hugh, ed. Solving the Pell equation. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidt, Wolfgang M. Diophantine Approximations and Diophantine Equations. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0098246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schmidt, Wolfgang M. Diophantine approximations and diophantine equations. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Padmanabha Rao, Anantapur, editor, translator, Bhāskarācārya 1114-, Bhāskarācārya 1114-, Gaṇeśadaivajña active 1520-1554 та Chinmaya International Foundation Shodha Sansthan, ред. Bhāskarācārya's Līlāvatī: Geometry, first degree indeterminate equation and permutations : a translation from Sanskrit into English with Sanskrit text and roman transliteration : with word by word meaning in the English text order of 138 ślokas and Gaṇeśadaivajña's the Buddhivilāsinī commentary. Chinmaya International Foundation Shodha Sansthan, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andreescu, Titu, and Dorin Andrica. Quadratic Diophantine Equations. Springer New York, 2015. http://dx.doi.org/10.1007/978-0-387-54109-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sprindžuk, Vladimir G. Classical Diophantine Equations. Edited by Ross Talent. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/bfb0073786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shorey, T. N. Exponential diophantine equations. Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sprindzhuk, V. G. Classical diophantine equations. Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

R, Tijdeman, ed. Exponential diophantine equations. Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grechuk, Bogdan. Polynomial Diophantine Equations. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62949-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Diophantine equation"

1

Elliott, P. D. T. A. "A Diophantine Equation." In Grundlehren der mathematischen Wissenschaften. Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8548-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zannier, Umberto. "The S-unit equation." In Lecture Notes on Diophantine Analysis. Scuola Normale Superiore, 2014. http://dx.doi.org/10.1007/978-88-7642-517-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bombieri, E. "On the thue-mahler equation." In Diophantine Approximation and Transcendence Theory. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Loeb, Arthur L. "A Diophantine Equation and its Solutions." In Concepts & Images. Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0343-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Křížek, Michal, Florian Luca, and Lawrence Somer. "Fermat Primes and a Diophantine Equation." In 17 Lectures on Fermat Numbers. Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21850-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stoll, Michael. "How to Solve a Diophantine Equation." In An Invitation to Mathematics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19533-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shorey, T. N. "An Equation of Goormaghtigh and Diophantine Approximations." In Current Trends in Number Theory. Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-09-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jahnel, Jörg. "The Diophantine equation 𝑥⁴+2𝑦⁴=𝑧⁴+4𝑤⁴." In Mathematical Surveys and Monographs. American Mathematical Society, 2014. http://dx.doi.org/10.1090/surv/198/06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hilbert, David. "The Diophantine Equation αm + βm + γm = 0." In The Theory of Algebraic Number Fields. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03545-0_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pethö, Attila. "On the solution of the diophantine equation Gn=pz." In EUROCAL '85. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-15984-3_320.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diophantine equation"

1

Medvid, Vladimir. "LINEAR DIOPHANTINE EQUATIONS ABOUT N UNKNOWNS." In 17th annual International Conference of Education, Research and Innovation. IATED, 2024. https://doi.org/10.21125/iceri.2024.0446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Algareeb, Eman Talib, and Valeriy Osipovich Osipyan. "A Mathematical Model of Asymmetric Encryption Based on Linear Diophantine Equations." In 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2024. http://dx.doi.org/10.1109/icecet61485.2024.10697990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zahari, N. M., S. H. Sapar, and K. A. Mohd Atan. "On the Diophantine equation." In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Avdyev, M. "THE DIOPHANTINE EQUATION FROM THE EYE OF PHYSICIST." In X Международная научно-практическая конференция "Культура, наука, образование: проблемы и перспективы". Нижневартовский государственный университет, 2022. http://dx.doi.org/10.36906/ksp-2022/57.

Full text
Abstract:
A Diophantine equation is an equation with integer coefficients, the solutions of which must be found among integers. The equation is named after the mathematician Diophantus of Alexandria (III century). Despite its simplicity, a Diophantine equation may have a nontrivial solution (several solutions) or has no solution at all. Fermat's Last Theorem and Pythagorean Theorem are the Diophantine equations too. In 1900 The German mathematician David Hilbert formulated the Tenth problem. After 70 years, the answer turned out to be negative: there is no general algorithm. Nevertheless, for some cases
APA, Harvard, Vancouver, ISO, and other styles
5

ȚARĂLUNGĂ, Boris. "About solutions of some non – linear Diophantine equations." In Ştiință și educație: noi abordări și perspective. "Ion Creanga" State Pedagogical University, 2023. http://dx.doi.org/10.46727/c.v3.24-25-03-2023.p293-298.

Full text
Abstract:
In this paper, it is show that the Diophantine exponential equation:2^x +12^y=z^2 has exactly three non – negative integer solutions {(3,0,3),(2,1,4),(8,2,20)}, the Diophantine exponential equation: 2^x+14^y=z^2 has exactly three non–negative integer solutions: {(3,0,3), (1,1,4),(7,2,18)}, the Diophantine exponential equation: 2^x+15^y=z^2 has exactly two non–negative integer solutions: {(3,0,3), (6,2,17)}.
APA, Harvard, Vancouver, ISO, and other styles
6

Medviď, Vladimir. "ALGORITHMS OF SOLVING THE DIOPHANTINE EQUATION." In 16th annual International Conference of Education, Research and Innovation. IATED, 2023. http://dx.doi.org/10.21125/iceri.2023.0225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He Kong, Bin Zhou, and Mao-Rui Zhang. "A Stein equation approach for solutions to the Diophantine equations." In 2010 Chinese Control and Decision Conference (CCDC). IEEE, 2010. http://dx.doi.org/10.1109/ccdc.2010.5498658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Özkoç, Arzu, Ahmet Tekcan, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Integer Solutions of a Special Diophantine Equation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balfaqih, Abdulrahman, and Hailiza Kamarulhaili. "On the Diophantine equation x1a+x2a+⋯+xma=pkyb." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Srivastava, Saurabh, Anuraag Misra, and V. S. Pandit. "Auto tuned PID controller design using Diophantine equation." In 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS). IEEE, 2012. http://dx.doi.org/10.1109/codis.2012.6422246.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diophantine equation"

1

Jain, Himanshu, Edmund M. Clarke, and Orna Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada476801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Osipov, Gennadij Sergeevich, Natella Semenovna Vashakidze, and Galina Viktorovna Filippova. Fundamentals of solving linear Diophantine equations with two unknowns. Постулат, 2018. http://dx.doi.org/10.18411/postulat-2018-2-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!