Academic literature on the topic 'Dirac Operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dirac Operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dirac Operators"

1

Cojuhari, Petru, and Aurelian Gheondea. "Embeddings, Operator Ranges, and Dirac Operators." Complex Analysis and Operator Theory 5, no. 3 (April 13, 2010): 941–53. http://dx.doi.org/10.1007/s11785-010-0066-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ashrafyan, Yuri, and Tigran Harutyunyan. "Isospectral Dirac operators." Electronic Journal of Qualitative Theory of Differential Equations, no. 4 (2017): 1–9. http://dx.doi.org/10.14232/ejqtde.2017.1.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nolder, Craig A., and John Ryan. "p-Dirac Operators." Advances in Applied Clifford Algebras 19, no. 2 (March 19, 2009): 391–402. http://dx.doi.org/10.1007/s00006-009-0162-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Notte-Cuello, E. A. "On the Dirac and Spin-Dirac Operators." Advances in Applied Clifford Algebras 20, no. 3-4 (May 11, 2010): 765–80. http://dx.doi.org/10.1007/s00006-010-0220-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prokhorenkov, Igor, and Ken Richardson. "Perturbations of Dirac operators." Journal of Geometry and Physics 57, no. 1 (December 2006): 297–321. http://dx.doi.org/10.1016/j.geomphys.2006.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ryan, John. "Intrinsic Dirac Operators inCn." Advances in Mathematics 118, no. 1 (March 1996): 99–133. http://dx.doi.org/10.1006/aima.1996.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BRIHAYE, Y., and A. NININAHAZWE. "DIRAC OSCILLATORS AND QUASI-EXACTLY SOLVABLE OPERATORS." Modern Physics Letters A 20, no. 25 (August 20, 2005): 1875–85. http://dx.doi.org/10.1142/s0217732305018128.

Full text
Abstract:
The Dirac equation is formulated in the background of three types of physically relevant potentials: scalar, vector and "Dirac-oscillator" potentials. Assuming these potentials to be spherically-symmetric and with generic polynomial forms in the radial variable, we construct the corresponding radial Dirac equation. Cases where this linear spectral equation is exactly solvable or quasi-exactly solvable are worked out in details. When available, relations between the radial Dirac operator and some super-algebra are pointed out.
APA, Harvard, Vancouver, ISO, and other styles
8

Baum, Paul F., and Erik van Erp. "K-homology and Fredholm operators I: Dirac operators." Journal of Geometry and Physics 134 (December 2018): 101–18. http://dx.doi.org/10.1016/j.geomphys.2018.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yuan, Hongfen, Guohong Shi, and Xiushen Hu. "Boundary Value Problems for the Perturbed Dirac Equation." Axioms 13, no. 4 (April 4, 2024): 238. http://dx.doi.org/10.3390/axioms13040238.

Full text
Abstract:
The perturbed Dirac operators yield a factorization for the well-known Helmholtz equation. In this paper, using the fundamental solution for the perturbed Dirac operator, we define Cauchy-type integral operators (singular integral operators with a Cauchy kernel). With the help of these operators, we investigate generalized Riemann and Dirichlet problems for the perturbed Dirac equation which is a higher-dimensional generalization of a Vekua-type equation. Furthermore, applying the generalized Cauchy-type integral operator F˜λ, we construct the Mann iterative sequence and prove that the iterative sequence strongly converges to the fixed point of operator F˜λ.
APA, Harvard, Vancouver, ISO, and other styles
10

DABROWSKI, LUDWIK, ANDRZEJ SITARZ, and ALESSANDRO ZUCCA. "DIRAC OPERATORS ON NONCOMMUTATIVE PRINCIPAL CIRCLE BUNDLES." International Journal of Geometric Methods in Modern Physics 11, no. 01 (December 16, 2013): 1450012. http://dx.doi.org/10.1142/s0219887814500121.

Full text
Abstract:
We study spectral triples over noncommutative principal U(1)-bundles of arbitrary dimension and a compatibility condition between the connection and the Dirac operator on the total space and on the base space of the bundle. Examples of low-dimensional noncommutative tori are analyzed in more detail and all connections found that are compatible with an admissible Dirac operator. Conversely, a family of new Dirac operators on the noncommutative tori, which arise from the base-space Dirac operator and a suitable connection is exhibited. These examples are extended to the theta-deformed principal U(1)-bundle [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dirac Operators"

1

Kungsman, Jimmy. "Resonances of Dirac Operators." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-223841.

Full text
Abstract:
This thesis consists of a summary of four papers dealing with resonances of Dirac operators on Euclidean 3-space. In Paper I we show that the Complex Absorbing Potential (CAP) method is valid in the semiclassical limit for resonances sufficiently close to the real line if the potential is smooth and compactly supported. In Paper II  we continue the investigations initiated in Paper I but here we study clouds of resonances close to the real line and show that in some sense the CAP method remains valid also for multiple resonances. In Paper III we study perturbations of Dirac operators with smooth decaying scalar potentials  and show that these possess many resonances near certain points related to the maximum and the minimum of the potential. In Paper IV we show a trace formula of Poisson type for Dirac operators having compactly supported potentials which is related to resonances. The techniques mainly stem from complex function theory and scattering theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Ginoux, Nicolas. "Dirac operators on Lagrangian submanifolds." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/562/.

Full text
Abstract:
We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge - de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Fangyun Ph D. Massachusetts Institute of Technology. "Dirac operators and monopoles with singularities." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41723.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2007.
Includes bibliographical references (p. 75-77).
This thesis consists of two parts. In the first part of the thesis, we prove an index theorem for Dirac operators of conic singularities with codimension 2. One immediate corollary is the generalized Rohklin congruence formula. The eta function for a twisted spin Dirac operator on a circle bundle over a even dimensional spin manifold is also derived along the way. In the second part, we study the moduli space of monopoles with singularities along an embedded surface. We prove that when the base manifold is Kahler, there is a holomorphic description of the singular monopoles. The compactness for this case is also proved.
by Fangyun Yang.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Savale, Nikhil Jr (Nikhil A. ). "Spectral asymptotics for coupled Dirac operators." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77804.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 137-139).
In this thesis, we study the problem of asymptotic spectral flow for a family of coupled Dirac operators. We prove that the leading order term in the spectral flow on an n dimensional manifold is of order r n+1/2 followed by a remainder of O(r n/2). We perform computations of spectral flow on the sphere which show that O(r n-1/2) is the best possible estimate on the remainder. To obtain the sharp remainder we study a semiclassical Dirac operator and show that its odd functional trace exhibits cancellations in its first n+3/2 terms. A normal form result for this Dirac operator and a bound on its counting function are also obtained.
by Nikhil Savale.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Stadtmüller, Christoph Martin. "Horizontal Dirac Operators in CR Geometry." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18130.

Full text
Abstract:
In dieser Dissertation beschäftigen wir uns mit angepassten Zusammenhängen und ihren (horizontalen) Dirac-Operatoren auf strikt pseudokonvexen CR-Mannigfaltigkeiten. Einen Zusammenhang nennen wir dann angepasst, wenn er die relevanten Daten parallelisiert. Wir beschreiben den Raum der angepassten Zusammenhänge, indem wir ihre Torsionstensoren studieren, von denen gewisse Teile durch die Geometrie der Mannigfaltigkeit festgelegt sind, während andere frei wählbar sind. Als Anwendung betrachten wir die Eigenschaften der Dirac-Operatoren, die zu diesen Zusammenhängen gehören. Weiter betrachten wir horizontale Dirac-Operatoren, die nur in Richtung des horizontalen Bündels H ableiten. Diese Operatoren sind besser an die Sub-Riemannsche Struktur einer CR-Mannigfaltigkeit angepasst als die vollen Dirac-Operatoren. Wir diskutieren, wann diese Operatoren formal selbstadjungiert sind und beweisen eine Weitzenböck-Typ-Formel. Wir konzentrieren uns dann auf den horizontalen Dirac-Operator zum Tanaka-Webster-Zusammenhang. Dieser ändert sich konform kovariant, wenn wir die Kontaktform konform ändern. Für diesen Operator betrachten wir weiterhin zwei Beispiele: Wir betrachten S^1-Bündel über Kähler-Mannigfaltigkeiten, insbesondere berechnen wir für Sphären einen Teil des Spektrums. Außerdem betrachten wir kompakte Quotienten der Heisenberggruppe und berechnen hier in den Dimensionen 3 und 5 das volle Spektrum. Die horizontalen Dirac-Operatoren sind nicht mehr elliptisch, sondern „elliptisch in Richtung von H“. Mithilfe des Heisenbergkalküls stellen wir fest, dass die horizontalen Dirac-Operatoren nicht hypoelliptisch sind. Im Fall des Tanaka-Webster-Zusammenhangs lässt sich aber zeigen, dass der zugehörige Operator auf gewissen Teilen des Spinorbündels hypoelliptisch ist. Dies genügt, um zu beweisen, dass er (nun auf dem gesamten Spinorbündel) ein reines Punktspektrum hat und die Eigenräume, bis auf den Kern, endlich-dimensional sind und aus glatten Eigenspinoren bestehen.
In the present thesis, we study adapted connections and their (horizontal) Dirac operators on strictly pseudoconvex CR manifolds. An adapted connection is one that parallelises the relevant data. We describe the space of adapted connections through their torsion tensors, certain parts of which are determined by the geometry of the manifold, while others may be freely chosen. As an application, we study the properties of the Dirac operators induced by these connections. We further consider horizontal Dirac operators, which only derive in the direction of the horizontal bundle H. These operators are more adapted to the essentially sub-Riemannian structure of a CR manifold than the full Dirac operators. We discuss the question of their self-adjointness and prove a Weitzenböck type formula for these operators. Focusing on the horizontal Dirac operator associated with the Tanaka-Webster connection, we show that this operator changes in a covariant way if we change the contact form conformally. Moreover, for this operator we discuss two examples: On S^1-bundles over Kähler manifolds, we can compute part of the spectrum and for compact quotients of the Heisenberg group, we determine the whole spectrum in dimensions three and five. The horizontal Dirac operators are not elliptic, but rather "elliptic in some directions". We review the Heisenberg Calculus for such operators and find that in general, the horizontal Dirac operators are not hypoelliptic. However, in the case of the Tanaka-Webster connection, the associated horizontal Dirac operator is hypoelliptic on certain parts of the spinor bundle and this is enough to prove that its spectrum consists only of eigenvalues and except for the kernel, the corresponding eigenspaces are finite-dimensional spaces of smooth sections.
APA, Harvard, Vancouver, ISO, and other styles
6

Anghel, Nicolae. "L²-index theorems for perturbed Dirac operators /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487598303839391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Afentoulidis-Almpanis, Spyridon. "Noncubic Dirac Operators for finite-dimensional modules." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0035.

Full text
Abstract:
Cette thèse porte sur l’étude des opérateurs de Dirac non-cubiques dans le cadre de la théorie des représentations des groupes de Lie. Après avoir présenté des notions de la théorie de Lie et des algèbres de Clifford, nous rappelons les propriétés principales des opérateurs de Dirac cubiques D introduits par Kostant en 1999. Ces résultats ont rapidement suscité un vif intérêt. En particulier, à la fin des années 2000, Vogan introduit une cohomologie définie par l’opérateur de Kostant et suggère une classification cohomologique des représentations. La cohomologie de Dirac a été calculée pour diverses familles de représentations, telles que les séries discrètes, les modules Aq(>) ou les modules de dimension finie. Pour les modules de dimension finie, la cohomologie de Dirac coïncide avec le noyau de D. Il apparait que l’opérateur de Dirac de Kostant est une version algébrique d’un opérateur différentiel issu d’une famille continue d’opérateurs de Dirac géométriques introduits par Slebarski dans les années 1980 dans le cadre de fibrés au- dessus d’espaces homogènes G/H de groupes compacts. Ce qui distingue l’opérateur de Dirac de Kostant est qu’il est le seul membre de cette famille dont le carré, généralisant une formule de Parthasarathy, diffère de l’opérateur de Casimir à un scalaire près. Cette propriété a des applications importantes en théorie des représentations des groupes de Lie. Le carré des opérateurs de Dirac non-cubiques, i.e des autres membres de la famille d’opérateurs de Slebarski, a été calculé par Agricola qui a également établit des liens précis entre ces opérateurs non-cubiques et la théorie des cordes en physique. Par ailleurs, les opérateurs de Dirac non-cubiques sont des opérateurs différentiels invariants, et donc leur noyau est le siège de représentations (de dimension finie) de groupes compacts. Dans cette thèse nous étudions le noyau des opérateurs de Dirac non-cubiques, et nous montrons, sous certaines conditions sur les espaces homogènes G/H, que ce noyau contient le noyau de l’opérateur de Dirac cubique. Nous obtenons en fait une formule explicite pour le noyau que nous appliquons aux cas des algèbres de Lie classiques et des algèbres de Lie exceptionnelles. Nous constatons que certaines propriétés des opérateurs non-cubiques sont analogues à celles de l’opérateur de Dirac de Kostant, tel que l’indice. Nous déduisons également quelques observations sur les opérateurs de Dirac géométrique non-cubiques
This thesis focuses on the study of noncubic Dirac operators within the framework of representation theory of Lie groups. After recalling basic notions of Lie theory and Clifford algebras, we present the main properties of cubic Dirac operators D introduced by Kostant in 1999. These results quickly aroused great interest. In particular, in the late 1990’s, Vogan introduced a cohomology defined by Kostant operator D and suggested a cohomological classification of representations. Dirac cohomology was computed for various families of representations, such as the discrete series, Aq(>) modules or finite dimensional representations. It turns out that for finite dimensional modules, Dirac cohomology coincides with the kernel of D. It appears that Kostant’s Dirac operator is an algebraic version of a specific member of a continuous family of geometric Dirac operators introduced by Slebarski in the mid 1980’s in the context of bundles over homogeneous spaces G/H of compact groups. What distinguishes the cubic Dirac operator is that it is the only member of this family whose square, generalizing Parthasarathy’s formula, differs from the Casimir operator up to a scalar. This property has important applications in representation theory of Lie groups. The square of the noncubic Dirac operators, i.e. of the other members of Slebarski’s family, was calculated by Agricola who also established precise links between these noncubic operators and string theory in physics. Actually, noncubic Dirac operators are invariant differential operators, and therefore their kernels define (finite-dimensional) representations of compact groups. In this thesis we study the kernel of noncubic Dirac operators, and we show that, under certain conditions on the homogeneous spaces G/H, the kernel contains the kernel of the cubic Dirac operator. We obtain an explicit formula for the kernel which we apply to the case of classical Lie algebras and of exceptional Lie algebras. We remark that some properties of noncubic operators are analogous to those of Kostant cubic Dirac operator, such as the index. We also deduce some observations on noncubic geometric Dirac operators
APA, Harvard, Vancouver, ISO, and other styles
8

Zucca, Alessandro. "Dirac Operators on Quantum Principal G-Bundles." Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4108.

Full text
Abstract:
In this thesis I discuss some results on the noncommutative (spin) geometry of quantum principal G-bundles. The first part of the thesis is devoted to the study of spectral triples over toral bundles; extending some recent results by L. Dabrowski and A. Sitarz, we introduce the notion of projectable spectral triple for T^n-bundles. Moreover, we work out twisted Dirac operators. We discuss, in particular, the application of these results to noncommutative tori. In the second part of the thesis, instead, we work out a method for constructing real spectral triples over cleft quantum principal G-bundles and we study the properties of these triples and their behaviour under gauge transformations. Some of the results discussed in this thesis can also be found in the following papers: arXiv:1305.6185 arXiv:1308.4738
APA, Harvard, Vancouver, ISO, and other styles
9

Nita, A. "Essential Self-Adjointness of the Symplectic Dirac Operators." Thesis, University of Colorado at Boulder, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10108819.

Full text
Abstract:

The main problem we consider in this thesis is the essential self-adjointness of the symplectic Dirac operators D and D constructed by Katharina Habermann in the mid 1990s. Her constructions run parallel to those of the well-known Riemannian Dirac operators, and show that in the symplectic setting many of the same properties hold. For example, the symplectic Dirac operators are also unbounded and symmetric, as in the Riemannian case, with one important difference: the bundle of symplectic spinors is now infinite-dimensional, and in fact a Hilbert bundle. This infinite dimensionality makes the classical proofs of essential self-adjointness fail at a crucial step, namely in local coordinates the coefficients are now seen to be unbounded operators on L2(Rn). A new approach is needed, and that is the content of these notes. We use the decomposition of the spinor bundle into countably many finite-dimensional subbundles, the eigenbundles of the harmonic oscillator, along with the simple behavior of D and D with respect to this decomposition, to construct an inductive argument for their essential self-adjointness. This requires the use of ancillary operators, constructed out of the symplectic Dirac operators, whose behavior with respect to the decomposition is transparent. By an analysis of their kernels we manage to deduce the main result one eigensection at a time.

APA, Harvard, Vancouver, ISO, and other styles
10

Zreik, Mahdi. "Spectral properties of Dirac operators on certain domains." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0085.

Full text
Abstract:
Cette thèse se focalise sur l'étude spectrale des modèles de perturbations de l'opérateur de Dirac libre en dimensions 2 et 3.Le premier chapitre de cette thèse étudie la perturbation de l'opérateur de Dirac par une grande masse M, supportée sur un domaine. Notre objectif principal est d'établir, sous la condition d'une masse M suffisamment grande, la convergence de l'opérateur perturbé vers l'opérateur de Dirac avec la condition au bord MIT bag, au sens de la norme de la résolvante. Pour se faire, nous introduisons ce que nous appelons les opérateurs Poincaré-Steklov (PS) (comme un analogue des opérateurs Dirichlet-to-Neumann pour l'opérateur de Laplace) et les analysons d'un point de vue microlocal, afin de comprendre précisément le taux de convergence de la résolvante. D'une part, nous montrons que les opérateurs PS s'intègrent dans le cadre des opérateurs pseudodifférentiels et nous déterminons leurs symboles principaux. D'autre part, comme nous nous intéressons principalement aux grandes masses, nous traitons notre problème du point de vue semiclassique, où le paramètre semiclassique est h = M^{-1}. Enfin, en établissant une formule de Krein reliant la résolvante de l'opérateur perturbé à celle de l'opérateur MIT bag, et en utilisant les propriétés pseudodifférentielles des opérateurs PS combinées aux structures matricielles des symboles principaux, nous établissons la convergence requise avec un taux de convergence de O(M^{-1}.Dans le chapitre 2, nous définissons un voisinage tubulaire de la frontière d'un domaine régulier donné. Nous considérons la perturbation de l'opérateur de Dirac libre par une grande masse M, supportée dans ce voisinage d'épaisseur varepsilon:=M^{-1}. Notre objectif principal est d'étudier la convergence de l'opérateur de Dirac perturbé lorsque M tend vers l'infini. En comparaison avec la première partie, nous obtenons ici deux opérateurs limites MIT bag, qui agissent en dehors de la frontière. Il est intéressant de noter que le découplage de ces deux opérateurs MIT bag peut être considéré comme la version confinée de delta-interaction scalaire de Lorentz de l'opérateur de Dirac, supportée sur une surface fermée. La méthodologie suivie, comme au problème précédent, porte sur l'étude des propriétés pseudodifférentielles des opérateurs PS. Cependant, la nouveauté de ce problème réside dans le contrôle de ces opérateurs en suivant la dépendance du paramètre varepsilon, et par conséquent, dans la convergence lorsque varepsilon tend vers 0 et M tend vers l'infini. Avec ces ingrédients, nous prouvons que l'opérateur perturbé converge au sens de la norme de la résolvante vers l'opérateur de Dirac couplé à une delta-interaction scalaire de Lorentz.Dans le chapitre 3, nous généralisation une approximation de l'opérateur de Dirac tridimensionnel couplé à une combinaison singulière de delta-interactions électrostatiques et scalaires de Lorentz supportée sur une surface fermée, par un opérateur de Dirac avec un potentiel régulier localisé dans une couche mince contenant la surface. Dans les cas non-critiques et non-confinants, nous montrons que l'opérateur de Dirac perturbé régulier converge au sens de la résolvante forte vers la delta-interaction singulière de l'opérateur de Dirac.Dans le dernier chapitre, notre étude porte sur l'opérateur de Dirac bidimensionnel couplé à une delta-interaction électrostatique et scalaire de Lorentz. Nous traitons dans des espaces de Sobolev d'ordre un-demi l'auto-adjonction de certaines réalisations de ces opérateurs dans divers contextes de courbes. Le cas le plus important se présente lorsque les courbes considérées sont des polygones curvilignes. Sous certaines conditions sur les constantes de couplage, en utilisant la propriété de Fredholm de certains opérateurs intégraux de frontière, et en exploitant la forme explicite de la transformée de Cauchy sur des courbes non lisses, nous établissons l'auto-adjonction de l'opérateur perturbé
This thesis mainly focused on the spectral analysis of perturbation models of the free Dirac operator, in 2-D and 3-D space.The first chapter of this thesis examines perturbation of the Dirac operator by a large mass M, supported on a domain. Our main objective is to establish, under the condition of sufficiently large mass M, the convergence of the perturbed operator, towards the Dirac operator with the MIT bag condition, in the norm resolvent sense. To this end, we introduce what we refer to the Poincaré-Steklov (PS) operators (as an analogue of the Dirichlet-to-Neumann operators for the Laplace operator) and analyze them from the microlocal point of view, in order to understand precisely the convergence rate of the resolvent. On one hand, we show that the PS operators fit into the framework of pseudodifferential operators and we determine their principal symbols. On the other hand, since we are mainly concerned with large masses, we treat our problem from the semiclassical point of view, where the semiclassical parameter is h = M^{-1}. Finally, by establishing a Krein formula relating the resolvent of the perturbed operator to that of the MIT bag operator, and using the pseudodifferential properties of the PS operators combined with the matrix structures of the principal symbols, we establish the required convergence with a convergence rate of mathcal{O}(M^{-1}).In the second chapter, we define a tubular neighborhood of the boundary of a given regular domain. We consider perturbation of the free Dirac operator by a large mass M, within this neighborhood of thickness varepsilon:=M^{-1}. Our primary objective is to study the convergence of the perturbed Dirac operator when M tends to +infty. Comparing with the first part, we get here two MIT bag limit operators, which act outside the boundary. It's worth noting that the decoupling of these two MIT bag operators can be considered as the confining version of the Lorentz scalar delta interaction of Dirac operator, supported on a closed surface. The methodology followed, as in the previous problem study the pseudodifferential properties of Poincaré-Steklov operators. However, the novelty in this problem lies in the control of these operators by tracking the dependence on the parameter varepsilon, and consequently, in the convergence as varepsilon goes to 0 and M goes to +infty. With these ingredients, we prove that the perturbed operator converges in the norm resolvent sense to the Dirac operator coupled with Lorentz scalar delta-shell interaction.In the third chapter, we investigate the generalization of an approximation of the three-dimensional Dirac operator coupled with a singular combination of electrostatic and Lorentz scalar delta-interactions supported on a closed surface, by a Dirac operator with a regular potential localized in a thin layer containing the surface. In the non-critical and non-confining cases, we show that the regular perturbed Dirac operator converges in the strong resolvent sense to the singular delta-interaction of the Dirac operator. Moreover, we deduce that the coupling constants of the limit operator depend nonlinearly on those of the potential under consideration.In the last chapter, our study focuses on the two-dimensional Dirac operator coupled with the electrostatic and Lorentz scalar delta-interactions. We treat in low regularity Sobolev spaces (H^{1/2}) the self-adjointness of certain realizations of these operators in various curve settings. The most important case in this chapter arises when the curves under consideration are curvilinear polygons, with smooth, differentiable edges and without cusps. Under certain conditions on the coupling constants, using the Fredholm property of certain boundary integral operators, and exploiting the explicit form of the Cauchy transform on non-smooth curves, we achieve the self-adjointness of the perturbed operator
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Dirac Operators"

1

1955-, Ryan John, Struppa Daniele Carlo 1955-, and International Society for Analysis, Applications, and Computation. Congress, eds. Dirac operators in analysis. Harlow, Essex, England: Longman, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

S, Sargsi͡a︡n I., ed. Sturm-Liouville and Dirac operators. Dordrecht: Kluwer Academic, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berline, Nicole, Ezra Getzler, and Michèle Vergne. Heat Kernels and Dirac Operators. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58088-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Levitan, B. M., and I. S. Sargsjan. Sturm—Liouville and Dirac Operators. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3748-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Habermann, Katharina, and Lutz Habermann. Introduction to Symplectic Dirac Operators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b138212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dirac operators and spectral geometry. Cambridge: Cambridge University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomas, Friedrich. Dirac operators in Riemannian geometry. Providence, R.I: American Mathematical Society, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berline, Nicole. Heat kernels and Dirac operators. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berline, Nicole. Heat kernels and Dirac operators. 2nd ed. Berlin: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Booß-Bavnbek, Bernhelm, and Krzysztof P. Wojciechowski. Elliptic Boundary Problems for Dirac Operators. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0337-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Dirac Operators"

1

Cnops, Jan. "Dirac Operators." In An Introduction to Dirac Operators on Manifolds, 61–89. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0065-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Booß-Bavnbek, Bernhelm, and Krzysztof P. Wojciechowski. "Dirac Operators." In Elliptic Boundary Problems for Dirac Operators, 19–25. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0337-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Friedrich, Thomas. "Dirac operators." In Graduate Studies in Mathematics, 57–90. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/gsm/025/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gesztesy, Fritz, and Marcus Waurick. "Dirac-Type Operators." In The Callias Index Formula Revisited, 55–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29977-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Mircea. "Deconstructing Dirac operators. III: Dirac and semi-Dirac pairs." In Topics in Operator Theory, 347–62. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0161-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Booß-Bavnbek, Bernhelm, and Krzysztof P. Wojciechowski. "Dirac Operators and Chirality." In Elliptic Boundary Problems for Dirac Operators, 40–42. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0337-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cordes, H. O. "On Dirac Observables." In Semigroups of Operators: Theory and Applications, 61–77. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8417-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berline, Nicole, Ezra Getzler, and Michèle Vergne. "Clifford Modules and Dirac Operators." In Heat Kernels and Dirac Operators, 99–137. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-58088-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berline, Nicole, Ezra Getzler, and Michèle Vergne. "Index Density of Dirac Operators." In Heat Kernels and Dirac Operators, 139–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-58088-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tuschmann, Wilderich, and David J. Wraith. "Dirac operators and index theorems." In Oberwolfach Seminars, 17–25. Basel: Springer Basel, 2015. http://dx.doi.org/10.1007/978-3-0348-0948-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dirac Operators"

1

Arriola, E. Ruiz. "Anomalies for nonlocal dirac operators." In The international workshop on hadron physics of low energy QCD. AIP, 2000. http://dx.doi.org/10.1063/1.1303042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tantalo, Nazario. "A mass preconditioning for lattice Dirac operators." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MARTIN, MIRCEA. "DECONSTRUCTING DIRAC OPERATORS I: QUANTITATIVE HARTOGS-ROSENTHAL THEOREMS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brackx, F., H. De Schepper, R. Lávička, V. Souček, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Fischer Decompositions of Kernels of Hermitean Dirac Operators." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ercan, Ahu, and Etibar Panakhov. "Stability of the spectral problem for Dirac operators." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"III.2 Dirac operators in analysis and related topics." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_others08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De Schepper, H., D. Eelbode, T. Raeymaekers, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "On an Inductive Construction of Higher Spin Dirac Operators." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Michel, Jean-Philippe. "Higher Symmetries of Laplace and Dirac operators - towards supersymmetries." In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

TOMODA, ATSUSHI. "A RELATION ON SPIN BUNDLE GERBES AND MAYER'S DIRAC OPERATORS." In Proceedings of the COE International Workshop. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812775061_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gattringer, Christof, and Stefan Solbrig. "Low-lying spectrum for lattice Dirac operators with twisted mass." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0127.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dirac Operators"

1

Tolksdorf, Jurgen. Gauge Theories with Spontaneously Broken Gauge Symmetry, Connections and Dirac Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-141-162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography