To see the other types of publications on this topic, follow the link: Dirac Operators.

Dissertations / Theses on the topic 'Dirac Operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Dirac Operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kungsman, Jimmy. "Resonances of Dirac Operators." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-223841.

Full text
Abstract:
This thesis consists of a summary of four papers dealing with resonances of Dirac operators on Euclidean 3-space. In Paper I we show that the Complex Absorbing Potential (CAP) method is valid in the semiclassical limit for resonances sufficiently close to the real line if the potential is smooth and compactly supported. In Paper II  we continue the investigations initiated in Paper I but here we study clouds of resonances close to the real line and show that in some sense the CAP method remains valid also for multiple resonances. In Paper III we study perturbations of Dirac operators with smooth decaying scalar potentials  and show that these possess many resonances near certain points related to the maximum and the minimum of the potential. In Paper IV we show a trace formula of Poisson type for Dirac operators having compactly supported potentials which is related to resonances. The techniques mainly stem from complex function theory and scattering theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Ginoux, Nicolas. "Dirac operators on Lagrangian submanifolds." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/562/.

Full text
Abstract:
We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge - de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Fangyun Ph D. Massachusetts Institute of Technology. "Dirac operators and monopoles with singularities." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41723.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2007.
Includes bibliographical references (p. 75-77).
This thesis consists of two parts. In the first part of the thesis, we prove an index theorem for Dirac operators of conic singularities with codimension 2. One immediate corollary is the generalized Rohklin congruence formula. The eta function for a twisted spin Dirac operator on a circle bundle over a even dimensional spin manifold is also derived along the way. In the second part, we study the moduli space of monopoles with singularities along an embedded surface. We prove that when the base manifold is Kahler, there is a holomorphic description of the singular monopoles. The compactness for this case is also proved.
by Fangyun Yang.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Savale, Nikhil Jr (Nikhil A. ). "Spectral asymptotics for coupled Dirac operators." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77804.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 137-139).
In this thesis, we study the problem of asymptotic spectral flow for a family of coupled Dirac operators. We prove that the leading order term in the spectral flow on an n dimensional manifold is of order r n+1/2 followed by a remainder of O(r n/2). We perform computations of spectral flow on the sphere which show that O(r n-1/2) is the best possible estimate on the remainder. To obtain the sharp remainder we study a semiclassical Dirac operator and show that its odd functional trace exhibits cancellations in its first n+3/2 terms. A normal form result for this Dirac operator and a bound on its counting function are also obtained.
by Nikhil Savale.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Stadtmüller, Christoph Martin. "Horizontal Dirac Operators in CR Geometry." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18130.

Full text
Abstract:
In dieser Dissertation beschäftigen wir uns mit angepassten Zusammenhängen und ihren (horizontalen) Dirac-Operatoren auf strikt pseudokonvexen CR-Mannigfaltigkeiten. Einen Zusammenhang nennen wir dann angepasst, wenn er die relevanten Daten parallelisiert. Wir beschreiben den Raum der angepassten Zusammenhänge, indem wir ihre Torsionstensoren studieren, von denen gewisse Teile durch die Geometrie der Mannigfaltigkeit festgelegt sind, während andere frei wählbar sind. Als Anwendung betrachten wir die Eigenschaften der Dirac-Operatoren, die zu diesen Zusammenhängen gehören. Weiter betrachten wir horizontale Dirac-Operatoren, die nur in Richtung des horizontalen Bündels H ableiten. Diese Operatoren sind besser an die Sub-Riemannsche Struktur einer CR-Mannigfaltigkeit angepasst als die vollen Dirac-Operatoren. Wir diskutieren, wann diese Operatoren formal selbstadjungiert sind und beweisen eine Weitzenböck-Typ-Formel. Wir konzentrieren uns dann auf den horizontalen Dirac-Operator zum Tanaka-Webster-Zusammenhang. Dieser ändert sich konform kovariant, wenn wir die Kontaktform konform ändern. Für diesen Operator betrachten wir weiterhin zwei Beispiele: Wir betrachten S^1-Bündel über Kähler-Mannigfaltigkeiten, insbesondere berechnen wir für Sphären einen Teil des Spektrums. Außerdem betrachten wir kompakte Quotienten der Heisenberggruppe und berechnen hier in den Dimensionen 3 und 5 das volle Spektrum. Die horizontalen Dirac-Operatoren sind nicht mehr elliptisch, sondern „elliptisch in Richtung von H“. Mithilfe des Heisenbergkalküls stellen wir fest, dass die horizontalen Dirac-Operatoren nicht hypoelliptisch sind. Im Fall des Tanaka-Webster-Zusammenhangs lässt sich aber zeigen, dass der zugehörige Operator auf gewissen Teilen des Spinorbündels hypoelliptisch ist. Dies genügt, um zu beweisen, dass er (nun auf dem gesamten Spinorbündel) ein reines Punktspektrum hat und die Eigenräume, bis auf den Kern, endlich-dimensional sind und aus glatten Eigenspinoren bestehen.
In the present thesis, we study adapted connections and their (horizontal) Dirac operators on strictly pseudoconvex CR manifolds. An adapted connection is one that parallelises the relevant data. We describe the space of adapted connections through their torsion tensors, certain parts of which are determined by the geometry of the manifold, while others may be freely chosen. As an application, we study the properties of the Dirac operators induced by these connections. We further consider horizontal Dirac operators, which only derive in the direction of the horizontal bundle H. These operators are more adapted to the essentially sub-Riemannian structure of a CR manifold than the full Dirac operators. We discuss the question of their self-adjointness and prove a Weitzenböck type formula for these operators. Focusing on the horizontal Dirac operator associated with the Tanaka-Webster connection, we show that this operator changes in a covariant way if we change the contact form conformally. Moreover, for this operator we discuss two examples: On S^1-bundles over Kähler manifolds, we can compute part of the spectrum and for compact quotients of the Heisenberg group, we determine the whole spectrum in dimensions three and five. The horizontal Dirac operators are not elliptic, but rather "elliptic in some directions". We review the Heisenberg Calculus for such operators and find that in general, the horizontal Dirac operators are not hypoelliptic. However, in the case of the Tanaka-Webster connection, the associated horizontal Dirac operator is hypoelliptic on certain parts of the spinor bundle and this is enough to prove that its spectrum consists only of eigenvalues and except for the kernel, the corresponding eigenspaces are finite-dimensional spaces of smooth sections.
APA, Harvard, Vancouver, ISO, and other styles
6

Anghel, Nicolae. "L²-index theorems for perturbed Dirac operators /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487598303839391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Afentoulidis-Almpanis, Spyridon. "Noncubic Dirac Operators for finite-dimensional modules." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0035.

Full text
Abstract:
Cette thèse porte sur l’étude des opérateurs de Dirac non-cubiques dans le cadre de la théorie des représentations des groupes de Lie. Après avoir présenté des notions de la théorie de Lie et des algèbres de Clifford, nous rappelons les propriétés principales des opérateurs de Dirac cubiques D introduits par Kostant en 1999. Ces résultats ont rapidement suscité un vif intérêt. En particulier, à la fin des années 2000, Vogan introduit une cohomologie définie par l’opérateur de Kostant et suggère une classification cohomologique des représentations. La cohomologie de Dirac a été calculée pour diverses familles de représentations, telles que les séries discrètes, les modules Aq(>) ou les modules de dimension finie. Pour les modules de dimension finie, la cohomologie de Dirac coïncide avec le noyau de D. Il apparait que l’opérateur de Dirac de Kostant est une version algébrique d’un opérateur différentiel issu d’une famille continue d’opérateurs de Dirac géométriques introduits par Slebarski dans les années 1980 dans le cadre de fibrés au- dessus d’espaces homogènes G/H de groupes compacts. Ce qui distingue l’opérateur de Dirac de Kostant est qu’il est le seul membre de cette famille dont le carré, généralisant une formule de Parthasarathy, diffère de l’opérateur de Casimir à un scalaire près. Cette propriété a des applications importantes en théorie des représentations des groupes de Lie. Le carré des opérateurs de Dirac non-cubiques, i.e des autres membres de la famille d’opérateurs de Slebarski, a été calculé par Agricola qui a également établit des liens précis entre ces opérateurs non-cubiques et la théorie des cordes en physique. Par ailleurs, les opérateurs de Dirac non-cubiques sont des opérateurs différentiels invariants, et donc leur noyau est le siège de représentations (de dimension finie) de groupes compacts. Dans cette thèse nous étudions le noyau des opérateurs de Dirac non-cubiques, et nous montrons, sous certaines conditions sur les espaces homogènes G/H, que ce noyau contient le noyau de l’opérateur de Dirac cubique. Nous obtenons en fait une formule explicite pour le noyau que nous appliquons aux cas des algèbres de Lie classiques et des algèbres de Lie exceptionnelles. Nous constatons que certaines propriétés des opérateurs non-cubiques sont analogues à celles de l’opérateur de Dirac de Kostant, tel que l’indice. Nous déduisons également quelques observations sur les opérateurs de Dirac géométrique non-cubiques
This thesis focuses on the study of noncubic Dirac operators within the framework of representation theory of Lie groups. After recalling basic notions of Lie theory and Clifford algebras, we present the main properties of cubic Dirac operators D introduced by Kostant in 1999. These results quickly aroused great interest. In particular, in the late 1990’s, Vogan introduced a cohomology defined by Kostant operator D and suggested a cohomological classification of representations. Dirac cohomology was computed for various families of representations, such as the discrete series, Aq(>) modules or finite dimensional representations. It turns out that for finite dimensional modules, Dirac cohomology coincides with the kernel of D. It appears that Kostant’s Dirac operator is an algebraic version of a specific member of a continuous family of geometric Dirac operators introduced by Slebarski in the mid 1980’s in the context of bundles over homogeneous spaces G/H of compact groups. What distinguishes the cubic Dirac operator is that it is the only member of this family whose square, generalizing Parthasarathy’s formula, differs from the Casimir operator up to a scalar. This property has important applications in representation theory of Lie groups. The square of the noncubic Dirac operators, i.e. of the other members of Slebarski’s family, was calculated by Agricola who also established precise links between these noncubic operators and string theory in physics. Actually, noncubic Dirac operators are invariant differential operators, and therefore their kernels define (finite-dimensional) representations of compact groups. In this thesis we study the kernel of noncubic Dirac operators, and we show that, under certain conditions on the homogeneous spaces G/H, the kernel contains the kernel of the cubic Dirac operator. We obtain an explicit formula for the kernel which we apply to the case of classical Lie algebras and of exceptional Lie algebras. We remark that some properties of noncubic operators are analogous to those of Kostant cubic Dirac operator, such as the index. We also deduce some observations on noncubic geometric Dirac operators
APA, Harvard, Vancouver, ISO, and other styles
8

Zucca, Alessandro. "Dirac Operators on Quantum Principal G-Bundles." Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4108.

Full text
Abstract:
In this thesis I discuss some results on the noncommutative (spin) geometry of quantum principal G-bundles. The first part of the thesis is devoted to the study of spectral triples over toral bundles; extending some recent results by L. Dabrowski and A. Sitarz, we introduce the notion of projectable spectral triple for T^n-bundles. Moreover, we work out twisted Dirac operators. We discuss, in particular, the application of these results to noncommutative tori. In the second part of the thesis, instead, we work out a method for constructing real spectral triples over cleft quantum principal G-bundles and we study the properties of these triples and their behaviour under gauge transformations. Some of the results discussed in this thesis can also be found in the following papers: arXiv:1305.6185 arXiv:1308.4738
APA, Harvard, Vancouver, ISO, and other styles
9

Nita, A. "Essential Self-Adjointness of the Symplectic Dirac Operators." Thesis, University of Colorado at Boulder, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10108819.

Full text
Abstract:

The main problem we consider in this thesis is the essential self-adjointness of the symplectic Dirac operators D and D constructed by Katharina Habermann in the mid 1990s. Her constructions run parallel to those of the well-known Riemannian Dirac operators, and show that in the symplectic setting many of the same properties hold. For example, the symplectic Dirac operators are also unbounded and symmetric, as in the Riemannian case, with one important difference: the bundle of symplectic spinors is now infinite-dimensional, and in fact a Hilbert bundle. This infinite dimensionality makes the classical proofs of essential self-adjointness fail at a crucial step, namely in local coordinates the coefficients are now seen to be unbounded operators on L2(Rn). A new approach is needed, and that is the content of these notes. We use the decomposition of the spinor bundle into countably many finite-dimensional subbundles, the eigenbundles of the harmonic oscillator, along with the simple behavior of D and D with respect to this decomposition, to construct an inductive argument for their essential self-adjointness. This requires the use of ancillary operators, constructed out of the symplectic Dirac operators, whose behavior with respect to the decomposition is transparent. By an analysis of their kernels we manage to deduce the main result one eigensection at a time.

APA, Harvard, Vancouver, ISO, and other styles
10

Zreik, Mahdi. "Spectral properties of Dirac operators on certain domains." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0085.

Full text
Abstract:
Cette thèse se focalise sur l'étude spectrale des modèles de perturbations de l'opérateur de Dirac libre en dimensions 2 et 3.Le premier chapitre de cette thèse étudie la perturbation de l'opérateur de Dirac par une grande masse M, supportée sur un domaine. Notre objectif principal est d'établir, sous la condition d'une masse M suffisamment grande, la convergence de l'opérateur perturbé vers l'opérateur de Dirac avec la condition au bord MIT bag, au sens de la norme de la résolvante. Pour se faire, nous introduisons ce que nous appelons les opérateurs Poincaré-Steklov (PS) (comme un analogue des opérateurs Dirichlet-to-Neumann pour l'opérateur de Laplace) et les analysons d'un point de vue microlocal, afin de comprendre précisément le taux de convergence de la résolvante. D'une part, nous montrons que les opérateurs PS s'intègrent dans le cadre des opérateurs pseudodifférentiels et nous déterminons leurs symboles principaux. D'autre part, comme nous nous intéressons principalement aux grandes masses, nous traitons notre problème du point de vue semiclassique, où le paramètre semiclassique est h = M^{-1}. Enfin, en établissant une formule de Krein reliant la résolvante de l'opérateur perturbé à celle de l'opérateur MIT bag, et en utilisant les propriétés pseudodifférentielles des opérateurs PS combinées aux structures matricielles des symboles principaux, nous établissons la convergence requise avec un taux de convergence de O(M^{-1}.Dans le chapitre 2, nous définissons un voisinage tubulaire de la frontière d'un domaine régulier donné. Nous considérons la perturbation de l'opérateur de Dirac libre par une grande masse M, supportée dans ce voisinage d'épaisseur varepsilon:=M^{-1}. Notre objectif principal est d'étudier la convergence de l'opérateur de Dirac perturbé lorsque M tend vers l'infini. En comparaison avec la première partie, nous obtenons ici deux opérateurs limites MIT bag, qui agissent en dehors de la frontière. Il est intéressant de noter que le découplage de ces deux opérateurs MIT bag peut être considéré comme la version confinée de delta-interaction scalaire de Lorentz de l'opérateur de Dirac, supportée sur une surface fermée. La méthodologie suivie, comme au problème précédent, porte sur l'étude des propriétés pseudodifférentielles des opérateurs PS. Cependant, la nouveauté de ce problème réside dans le contrôle de ces opérateurs en suivant la dépendance du paramètre varepsilon, et par conséquent, dans la convergence lorsque varepsilon tend vers 0 et M tend vers l'infini. Avec ces ingrédients, nous prouvons que l'opérateur perturbé converge au sens de la norme de la résolvante vers l'opérateur de Dirac couplé à une delta-interaction scalaire de Lorentz.Dans le chapitre 3, nous généralisation une approximation de l'opérateur de Dirac tridimensionnel couplé à une combinaison singulière de delta-interactions électrostatiques et scalaires de Lorentz supportée sur une surface fermée, par un opérateur de Dirac avec un potentiel régulier localisé dans une couche mince contenant la surface. Dans les cas non-critiques et non-confinants, nous montrons que l'opérateur de Dirac perturbé régulier converge au sens de la résolvante forte vers la delta-interaction singulière de l'opérateur de Dirac.Dans le dernier chapitre, notre étude porte sur l'opérateur de Dirac bidimensionnel couplé à une delta-interaction électrostatique et scalaire de Lorentz. Nous traitons dans des espaces de Sobolev d'ordre un-demi l'auto-adjonction de certaines réalisations de ces opérateurs dans divers contextes de courbes. Le cas le plus important se présente lorsque les courbes considérées sont des polygones curvilignes. Sous certaines conditions sur les constantes de couplage, en utilisant la propriété de Fredholm de certains opérateurs intégraux de frontière, et en exploitant la forme explicite de la transformée de Cauchy sur des courbes non lisses, nous établissons l'auto-adjonction de l'opérateur perturbé
This thesis mainly focused on the spectral analysis of perturbation models of the free Dirac operator, in 2-D and 3-D space.The first chapter of this thesis examines perturbation of the Dirac operator by a large mass M, supported on a domain. Our main objective is to establish, under the condition of sufficiently large mass M, the convergence of the perturbed operator, towards the Dirac operator with the MIT bag condition, in the norm resolvent sense. To this end, we introduce what we refer to the Poincaré-Steklov (PS) operators (as an analogue of the Dirichlet-to-Neumann operators for the Laplace operator) and analyze them from the microlocal point of view, in order to understand precisely the convergence rate of the resolvent. On one hand, we show that the PS operators fit into the framework of pseudodifferential operators and we determine their principal symbols. On the other hand, since we are mainly concerned with large masses, we treat our problem from the semiclassical point of view, where the semiclassical parameter is h = M^{-1}. Finally, by establishing a Krein formula relating the resolvent of the perturbed operator to that of the MIT bag operator, and using the pseudodifferential properties of the PS operators combined with the matrix structures of the principal symbols, we establish the required convergence with a convergence rate of mathcal{O}(M^{-1}).In the second chapter, we define a tubular neighborhood of the boundary of a given regular domain. We consider perturbation of the free Dirac operator by a large mass M, within this neighborhood of thickness varepsilon:=M^{-1}. Our primary objective is to study the convergence of the perturbed Dirac operator when M tends to +infty. Comparing with the first part, we get here two MIT bag limit operators, which act outside the boundary. It's worth noting that the decoupling of these two MIT bag operators can be considered as the confining version of the Lorentz scalar delta interaction of Dirac operator, supported on a closed surface. The methodology followed, as in the previous problem study the pseudodifferential properties of Poincaré-Steklov operators. However, the novelty in this problem lies in the control of these operators by tracking the dependence on the parameter varepsilon, and consequently, in the convergence as varepsilon goes to 0 and M goes to +infty. With these ingredients, we prove that the perturbed operator converges in the norm resolvent sense to the Dirac operator coupled with Lorentz scalar delta-shell interaction.In the third chapter, we investigate the generalization of an approximation of the three-dimensional Dirac operator coupled with a singular combination of electrostatic and Lorentz scalar delta-interactions supported on a closed surface, by a Dirac operator with a regular potential localized in a thin layer containing the surface. In the non-critical and non-confining cases, we show that the regular perturbed Dirac operator converges in the strong resolvent sense to the singular delta-interaction of the Dirac operator. Moreover, we deduce that the coupling constants of the limit operator depend nonlinearly on those of the potential under consideration.In the last chapter, our study focuses on the two-dimensional Dirac operator coupled with the electrostatic and Lorentz scalar delta-interactions. We treat in low regularity Sobolev spaces (H^{1/2}) the self-adjointness of certain realizations of these operators in various curve settings. The most important case in this chapter arises when the curves under consideration are curvilinear polygons, with smooth, differentiable edges and without cusps. Under certain conditions on the coupling constants, using the Fredholm property of certain boundary integral operators, and exploiting the explicit form of the Cauchy transform on non-smooth curves, we achieve the self-adjointness of the perturbed operator
APA, Harvard, Vancouver, ISO, and other styles
11

Scott, Simon Gareth. "Determinants of Dirac operators over a manifold with boundary." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Orduz, Barrera Juan Camilo. "Induced Dirac-Schrödinger operators on $S^1$-semi-free quotients." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18565.

Full text
Abstract:
John Lott berechnete eine Signatur mit ganzzahligen Werten für den Orbitraum einer kompakten, orientierbaren (4k + 1)-Mannigfaltigkeit mit einer halbfreien S1-Wirkung. Diese Signatur ist eine Homotopieinvariante für den Orbitraum. Allerdings konstruierte er keinen Operator vom Dirac-Typ, der die Signatur als Index besitzt. In dieser Arbeit konstruieren wir einen solchen Operator auf dem Orbitraum der S1-Wirkung, einem Thom-Mather stratifizierten Raum mit einem singulären Stratum von positiver Dimension, und wir zeigen, dass der Operator im wesentlichen eindeutig bestimmt ist. Ferner zeigen wir, dass sein Index mit Lotts Signatur übereinstimmt, zumindest wenn der stratifizierte Raum die sogenannte Witt-Bedingung erfüllt. Wirnennendiesen Operator den induzierten Dirac-Schrödinger Operator. Unsere Konstruktionsstrategie ist es, einen geeigneten S1-invarianten transversal elliptischen Operator erster Ordnung auf den S1-invarianten Differentialformen zu definieren, der den gesuchten Operator auf den Differentialformen des Orbitraums induziert. Die Witt-Bedingung, eine topologische Bedingung, welche in diesem Fall von der Kodimension der betrachteten Punktmenge abhängt, lässt verschiedene analytische Schlussfolgerungen zu. Insbesondere ist, wenn die Bedingung nicht erfüllt ist, der Hodge-de Rham Operator auf dem Quotientenraum nicht notwendigerweise essentiell selbstadjungiert und die Wahl einer Randbedingung ist daher notwendig. Diese Wahlfreiheit erscheint unnatürlich in Anbetracht der Tatsache, dass Lotts Signatur unabhängig von der Witt-Bedingung wohldefiniert ist. Der Dirac-Schrödinger Operator, der in dieser Arbeit konstruiert wird, unterschei- det sich vom Hodge-de Rham Operator durch einen Term nullter Ordnung, welcher sicherstellt, dass der Operator wesentlich selbstadjungiert ist. Außerdem antikommutiert dieser Term nullter Ordnung mit der Signatur-Involution, wodurch der gesamte Operator zerfällt und so der Index berechnet werden kann, auch wenn die Witt-Bedingung nicht erfüllt ist.
John Lott has computed an integer-valued signature for the orbit space of a compact orientable (4k + 1) manifold with a semi-free S1-action, which is a homotopy invariant of that space, but he did not construct a Dirac type operator which has this signature as its index. In this Thesis, we construct such operator on the orbit space, a Thom-Mather stratified space with one singular stratum of positive dimension, and we show that it is essentially unique and that its index coincides with Lott’s signature, at least when the stratified space satisfies the so called Witt condition. We call this operator the induced Dirac-Schrödinger operator. The strategy of the construction is to “push down” an appropriate S1-invariant first order transversally elliptic operator to the quotient space. The Witt condition, a topological condition which in this case depends on the codi- mension of the fixed point set, has various analytic consequences. In particular, when not satisfied, the Hodge-de Rham operator on the quotient space does not need to be essentially self-adjoint and therefore a choice of boundary conditions is required. This choice freedom is not natural in view of the fact that Lott’s signature is well defined independently of the Witt condition. The Dirac-Schrödinger operator constructed in this Thesis differs from the Hodge-de Rham operator by a zero order term which ensures it to be essentially self-adjoint. Moreover, this zero order term anti-commutes with the chirality involution allowing the whole operator to split so that the index can be computed even if the Witt condition is not satisfied.
APA, Harvard, Vancouver, ISO, and other styles
13

Hughes, Daniel Gordon John. "Spectral analysis of Dirac operators under integral conditions on the potential." Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/43141/.

Full text
Abstract:
We show that the absolutely continuous part of the spectral function of the one-dimensional Dirac operator on a half-line with a constant mass term and a real, square-integrable potential is strictly increasing throughout the essential spectrum (-∞,-1]U[1,∞). The proof is based on estimates for the transmission coefficient for the full-line scattering problem with a truncated potential and a subsequent limiting procedure for the spectral function. Furthermore, we show that the absolutely continuous spectrum persists when an angular momentum term is added, thus establishing the result for spherically symmetric Dirac operators in higher dimensions, too. Finally, with regard to this problem, we show that a sparse perturbation of a square integrable potential does not cause the absolutely continuous spectrum to become larger in the one-dimensional case. The final problem considered is regarding bound states, where we show that if the electric potential obeys the asymptotic bound C:=\lim sup_x→∞_ x|q(x)|<∞ then the eigenvalues outside of the spectral gap [-m,m] must obey Σ_n_(λ²_n-1)
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Liangpan. "Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23004.

Full text
Abstract:
In this dissertation we study non-negative self-adjoint Laplace type operators acting on smooth sections of a vector bundle. First, we assume base manifolds are compact, boundaryless, and Riemannian. We start from the Fourier integral operator representation of half-wave operators, continue with spectral zeta functions, heat and resolvent trace asymptotic expansions, and end with the quantitative Wodzicki residue method. In particular, all of the asymptotic coefficients of the microlocalized spectral counting function can be explicitly given and clearly interpreted. With the auxiliary pseudo-differential operators ranging all smooth endomorphisms of the given bundle, we obtain certain asymptotic estimates about the integral kernel of heat operators. As applications, we study spectral asymptotics of Dirac type operators such as characterizing those for which the second coefficient vanishes. Next, we assume vector bundles are trivial and base manifolds are Euclidean domains, and study non-negative self-adjoint extensions of the Laplace operator which acts component-wise on compactly supported smooth functions. Using finite propagation speed estimates for wave equations and explicit Fourier Tauberian theorems obtained by Yuri Safarov, we establish the principle of not feeling the boundary estimates for the heat kernel of these operators. In particular, the implied constants are independent of self-adjoint extensions. As a by-product, we affirmatively answer a question about upper estimate for the Neumann heat kernel. Finally, we study some specific values of the spectral zeta function of two-dimensional Dirichlet Laplacians such as spectral determinant and Casimir energy. For numerical purposes we substantially improve the short-time Dirichlet heat trace asymptotics for polygons. This could be used to measure the spectral determinant and Casimir energy of polygons whenever the first several hundred or one thousand Dirichlet eigenvalues are known with high precision by other means.
APA, Harvard, Vancouver, ISO, and other styles
15

Gajdzinski, Cezary. "L2-Indices for Perturbed Dirac Operators on Odd Dimensional Open Complete Manifolds." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/40151.

Full text
Abstract:
For perturbations of the Callias and Anghel type the L2-index of the perturbed Dirac operator on a Spin c -manifold is realized as the result of pairing an element in K -homology with an element of compactly supported K -cohomology. This is achieved by putting the problem of calculating the Fredholm index of the perturbed Dirac operator in the framework of KK-theory and using the identification of K-groups with KK-groups. The formula for the Fredholm index is given in terms of topological data of the Spin c-manifold and the structure of the perturbation.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
16

Wittmann, Anja [Verfasser], and Sebastian [Akademischer Betreuer] Goette. "Eta-forms and adiabatic limits for fibrewise Dirac operators with varying kernel dimension = Eta-Formen und adiabatische Limiten für faserweise Dirac Operatoren mit variierender Kern-Dimension." Freiburg : Universität, 2016. http://d-nb.info/1122647476/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fischmann, Matthias. "Conformally covariant differential operators acting on spinor bundles and related conformal covariants." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16703.

Full text
Abstract:
Konforme Potenzen des Dirac Operators einer semi Riemannschen Spin-Mannigfaltigkeit werden untersucht. Wir präsentieren einen neuen Beweis, basierend auf dem Traktor Kalkül, für die Existenz von konformen ungeraden Potenzen des Dirac Operators auf semi Riemannschen Spin-Mannigfaltigkeiten. Desweiteren konstruieren wir eine neue Familie von konform kovarianten linearen Differentialoperatoren auf dem standard spin Traktor Bündel. Weiterhin verallgemeinern wir den Existenzbeweis für konforme ungerade Potenzen des Dirac Operators auf semi Riemannsche Spin-Mannigfaltigkeiten. Da die Existenzbeweise konstruktive sind, erhalten wir explizite Formeln für die konforme dritte und fünfte Potenz des Dirac Operators. Basierend auf den expliziten Formeln zeigen wir, dass die konforme dritte und fünfte Potenz des Dirac Operators formal selbstadjungiert (anti selbstadjungiert) bezüglich des L2-Skalarproduktes auf dem Spinorbündel ist. Abschliessend präsentieren wir neue Strukturen der konformen ersten, dritten und fünften Potenz des Dirac Operators: Es existieren lineare Differentialoperatoren auf dem Spinorbündel der Ordnung kleiner gleich eins, so dass die konforme erste, dritte und fünfte Potenz des Dirac Operators ein Polynom in jenen Operatoren ist.
Conformal powers of the Dirac operator on semi Riemannian spin manifolds are investigated. We give a new proof of the existence of conformal odd powers of the Dirac operator on semi Riemannian spin manifolds using the tractor machinery. We will also present a new family of conformally covariant linear differential operators on the standard spin tractor bundle. Furthermore, we generalize the known existence proof of conformal power of the Dirac operator on Riemannian spin manifolds to semi Riemannian spin manifolds. Both proofs concering the existence of conformal odd powers of the Dirac operator are constructive, hence we also derive an explicit formula for a conformal third- and fifth power of the Dirac operator. Due to explicit formulas, we show that the conformal third- and fifth power of the Dirac operator is formally self-adjoint (anti self-adjoint), with respect to the L2-scalar product on the spinor bundle. Finally, we present a new structure of the conformal first-, third- and fifth power of the Dirac operator: There exist linear differential operators on the spinor bundle of order less or equal one, such that the conformal first-, third- and fifth power of the Dirac operator is a polynomial in these operators.
APA, Harvard, Vancouver, ISO, and other styles
18

Vieira, Nelson Felipe Loureiro. "Theory of the parabolic Dirac operators and its applications to non-linear differential equations." Doctoral thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shi, Qiang. "Sharp estimates of the transmission boundary value problem for dirac operators on non-smooth domains." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4358.

Full text
Abstract:
Thesis (Ph.D.)--University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 1, 2007) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
20

Mbarek, Aiman. "Études théorème d'absorption limite pour les opérateurs de Schrödinger et Dirac avec un potentiel oscillant." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0839/document.

Full text
Abstract:
Dans cette thèse nous avons étudié, d'une part le théorème d'absorption limitepour des opérateurs de Schrödinger et de Dirac avec des potentiels oscillants. Lefait de considérer des potentiels oscillants est intéressant dans la mesure où ses opé-rateurs peuvent avoir des valeurs propres plongées dans le spectre continu (c'est lecas pour Schrödinger), ce qui est plutôt inhabituel et introduit de nouvelles di-cultés. L'étude du théorème d'absorption limite est très importante pour la théoriede la diffusion. Un intérêt particulier du sujet réside dans le fait que l'outil naturelpour procéder à l'étude en question, à savoir la théorie du commutateur de Mourre,ne s'applique pas. Une alternative récente a été développée par les co-directeurs dela thèse Thierry Jecko et Sylvain Golénia. Elle a été appliquée à un opérateur deSchrödinger avec potentiel oscillant. Il s'agit donc d'améliorer les résultats sur lesopérateurs de Schrödinger et de traiter le cas des opérateurs de Dirac. D'autre part,nous avons montré un résultat de type Helffer-Sjöstrand pour les opérateurs unitaires.Et pour finir, nous avons pu montrer l'existence des valeurs propre plongéespour l'opérateur de Dirac avec des potentiels relativement compact par rapport àl'opérateur de Dirac libre sur son spectre essentiel
In this thesis, we have studied the limit absorption theorem for Schrödinger andDirac operators with oscillating potentials. Considering oscillating potentials is interestinginsofar as its operators can have of the eigenvalues plunged into the continuousspectrum (this is the case for Schrödinger), which is rather unusual and introducesnew dificulties. The study of the limit absorption theorem is very important for thetheory of diffusion. A particular interest of the subject lies in the fact that the naturaltool for the study in question, namely the Mourre switch theory, does not apply. Arecent alternative has been developed by the co-directors Thierry Jecko and SylvainGolénia. It has been applied to a Schrödinger operator with oscillating potential. Itis therefore a question of improving the results on the Schrödinger operators and oftreating the case of Dirac operators. Secondly, we have shown a Helffer-Sjöstrandformula for the unit operators and finally we have been able to show the existenceof the eigenvalues plunged for the Dirac operator with relatively compact potentialsrelative to the operator of free Dirac on its essential spectrum
APA, Harvard, Vancouver, ISO, and other styles
21

Kramer, Wolfram. "Der Diracoperator auf Faserungen." Bonn : [s.n.], 1999. http://catalog.hathitrust.org/api/volumes/oclc/41464666.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stadtmüller, Christoph Martin [Verfasser], Helga [Gutachter] Baum, Bernd [Gutachter] Ammann, and Uwe [Gutachter] Semmelmann. "Horizontal Dirac Operators in CR Geometry / Christoph Martin Stadtmüller ; Gutachter: Helga Baum, Bernd Ammann, Uwe Semmelmann." Berlin : Humboldt-Universität zu Berlin, 2017. http://d-nb.info/1189326345/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Buggisch, Lukas Werner [Verfasser], and Johannes [Akademischer Betreuer] Ebert. "The spectral flow theorem for families of twisted Dirac operators / Lukas Werner Buggisch ; Betreuer: Johannes Ebert." Münster : Universitäts- und Landesbibliothek Münster, 2019. http://d-nb.info/1190724960/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Brüning, Jochen [Gutachter], Schüth [Gutachter] Dorothee, and Richardson [Gutachter] Ken. "Induced Dirac-Schrödinger operators on $S^1$-semi-free quotients / Gutachter: Jochen Brüning, Schüth Dorothee, Richardson Ken." Berlin : Humboldt-Universität zu Berlin, 2017. http://d-nb.info/1189327856/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lapp, Frank. "An index theorem for operators with horn singularities." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16838.

Full text
Abstract:
Die abgeschlossenen Erweiterungen der sogenannten geometrischen Operatoren (Spin-Dirac, Gauß-Bonnet und Signatur-Operator) auf Mannigfaltigkeiten mit metrischen Hörnern sind Fredholm-Operatoren und ihr Index wurde von Matthias Lesch, Norbert Peyerimhoff und Jochen Brüning berechnet. Es wurde gezeigt, dass die Einschränkungen dieser drei Operatoren auf eine punktierte Umgebung des singulären Punkts unitär äquivalent zu irregulär singulären Operator-wertigen Differentialoperatoren erster Ordnung sind. Die Lösungsoperatoren der dazugehörigen Differentialgleichungen definierten eine Parametrix, mit deren Hilfe die Fredholmeigenschaft bewiesen wurde. In der vorliegenden Doktorarbeit wird eine Klasse von irregulären singulären Differentialoperatoren erster Ordnung, genannt Horn-Operatoren, eingeführt, die die obigen Beispiele verallgemeinern. Es wird bewiesen, dass ein elliptischer Differentialoperator erster Ordnung, dessen Einschränkung auf eine punktierte Umgebung des singulären Punkts unitär äquivalent zu einem Horn-Operator ist, Fredholm ist, und sein Index wird berechnet. Schließlich wird dieser abstrakte Index-Satz auf geometrische Operatoren auf Mannigfaltigkeiten mit "multiply warped product"-Singularitäten angewendet, welche eine wesentliche Verallgemeinerung der metrischen Hörner darstellen.
The closed extensions of geometric operators (Spin-Dirac, Gauss-Bonnet and Signature operator) on a manifold with metric horns are Fredholm operators, and their indices were computed by Matthias Lesch, Norbert Peyerimhoff and Jochen Brüning. It was shown that the restrictions of all three operators to a punctured neighbourhood of the singular point are unitary equivalent to a class of irregular singular operator-valued differential operators of first order. The solution operators of the corresponding differential equations defined a parametrix which was applied to prove the Fredholm property. In this thesis a class of irregular singular differential operators of first order - called horn operators - is introduced that extends the examples mentioned above. It is proved that an elliptic differential operator of first order whose restriction to the neighbourhood of the singular point is unitary equivalent to a horn operator is Fredholm and its index is computed. Finally, this abstract index theorem is applied to compute the indices of geometric operators on manifolds with multiply warped product singularities that extend the notion of metric horns considerably.
APA, Harvard, Vancouver, ISO, and other styles
26

La, Fuente Gravy Laurent. "Automorphismes hamiltoniens d'un produit star et opérateurs de Dirac Symplectiques." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209411.

Full text
Abstract:
Cette thèse est consacrée à l'étude de deux sujets de géométrie symplectique inspirés

de la physique mathématique. Les thèmes que nous développerons mettent en évidence certaines

connexions avec la topologie symplectique d'une part, la géométrie Riemannienne d'autre part.

Dans la partie 1, nous étudions la quantification par déformation formelle d'une variété

symplectique, à l'aide de produits star. Nous définissons le groupe des automorphimes

hamiltoniens d'un produit star formel. En nous inspirant d'idées de Banyaga, nous

identifions ce groupe comme étant le noyau d'un morphisme remarquable sur le groupe

des automorphismes du produit star. Nous relions certaines propriétés géométriques de

ce groupe d'automorphismes hamiltoniens à la topologie du groupe des difféomorphismes

hamiltoniens.

Dans la partie 2, nous étudions les opérateurs de Dirac symplectiques. Les ingrédients

nécessaires à leur construction (algèbre de Weyl, structures $Mp^c$, champs de spineurs

symplectiques, connexions symplectiques,) sont également utilisés en quantification géométrique et en

quantification par déformation formelle. Les opérateurs de Dirac symplectiques sont construits

de manière analogue à l'opérateur de Dirac de la géométrie Riemannienne. Une formule de Weitzenbock

lie les opérateurs de Dirac symplectiques à un opérateur elliptique $mathcal{P}$ d'ordre 2. Nous étudions

les noyaux de ces opérateurs de Dirac symplectiques et leur lien avec le noyau de P.

Sur l'espace hermitien symétrique $CP^n$, nous calculerons le spectre de $mathcal{P}$ et nous

prouverons un théorème de Hodge pour les opérateurs de Dirac-Dolbeault symplectiques.

/

In this thesis we study two topics of symplectic geometry inspired from mathematical physics.

Part 1 is devoted to the study of deformation quantization of symplectic manifolds. More precisely, we consider formal star products on a symplectic manifold. We define the group of Hamiltonian automorphisms of a formal star product. Following ideas of Banyaga, we describe this group as the kernel

of a morphism on the group of automorphisms of the star product. We relate geometric properties of the group of Hamiltonian automorphisms to the topology of the group of Hamiltonian diffeomorphisms.

Part 2 is devoted to the study of symplectic Dirac operators. The construction of those operators relies on many concepts used in geometric quantization and formal deformation quantization such as Weyl algebra, $Mp^c$ structures, symplectic spinors, symplectic connections, The construction of symplectic Dirac operators is analogous to the one of Dirac operators in Riemannian geometry. A Weitzenbock formula relates the symplectic Dirac operators to an elliptic operator $mathcal{P}$ of order 2. We study the kernels of the symplectic Dirac operators and relate them to the kernel of $mathcal{P}$. On the hermitian symmetric space

$CP^n$, we compute the spectrum of $mathcal{P}$ and we prove a Hodge theorem for the symplectic Dirac-Dolbeault operator.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
27

Esfahani, Zadeh Mostafa. "A family index theorem for foliated manifolds with boundary." Paris 7, 2005. http://www.theses.fr/2005PA077138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Oelker, Martin [Verfasser], and Dirk-André [Akademischer Betreuer] Deckert. "On domain, self-adjointness, and spectrum of Dirac operators for two interacting particles / Martin Oelker ; Betreuer: Dirk-André Deckert." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1190563703/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Savin, Anton, and Boris Sternin. "Eta invariant and parity conditions." Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2586/.

Full text
Abstract:
We give a formula for the η-invariant of odd order operators on even-dimensional manifolds, and for even order operators on odd-dimensional manifolds. Geometric second order operators are found with nontrivial η-invariants. This solves a problem posed by P. Gilkey.
APA, Harvard, Vancouver, ISO, and other styles
30

Zalczer, Sylvain. "Propriétés spectrales de modèles de graphène périodique et désordonné." Thesis, Toulon, 2020. http://www.theses.fr/2020TOUL0003.

Full text
Abstract:
Cette thèse traite de différents aspects de la théorie spectrale d’opérateurs utilisés pour modéliser le graphène. Elle est constituée de deux parties. La première traite du cas périodique. Je commence par présenter la théorie générale des systèmes périodiques. J’introduis ensuite les différents modèles de graphène en les comparant. Enfin, je m’intéresse à différentes façons de rendre le graphène semi-conducteur. Je fais en particulier une étude de nanorubans de divers types et présente un résultat d’ouverture d’une lacune spectrale pour un opérateur pseudo-différentiel. La deuxième partie traite du cas désordonné. Je commence par présenter la théorie générale des opérateurs aléatoires. J’explique ensuite succinctement l’analyse multi-échelles qui est la méthode permettant de montrer le résultat essentiel de cette théorie, appelé localisation d’Anderson. Enfin, je donne la preuve de cette localisation pour un modèle de graphène ainsi qu’un résultat sur la densité d’états intégrée
This thesis deals with various aspects of spectral theory of operators used to model graphene. It is made of two parts.The first parts deals with the periodic case. I begin by presenting a general theory of periodic systems. I introduce then different models of graphene and compare them. Finally, I look at various ways to make graphene a semiconductor. In particular, I study different types of nanoribbons and I give a result of gap opening for a pseudodifferential operator. The second part deals with the disordered case. I begin by presenting a general theory of random operators. Then, I briefly explain multiscale analysis, which is the method used to prove the main result of this theory, which is called Anderson localization. Finally, I give a proof of this localization for a model of graphene and a result on the integrated density of states
APA, Harvard, Vancouver, ISO, and other styles
31

Le, Thu Hoai. "Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4D." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-150508.

Full text
Abstract:
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt. Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert. Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt
The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics. The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula. In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable
APA, Harvard, Vancouver, ISO, and other styles
32

Reynolds, Paul. "On conformal submersions and manifolds with exceptional structure groups." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6218.

Full text
Abstract:
This thesis comes in three main parts. In the first of these (comprising chapters 2 - 6), the basic theory of Riemannian and conformal submersions is described and the relevant geometric machinery explained. The necessary Clifford algebra is established and applied to understand the relationship between the spinor bundles of the base, the fibres and the total space of a submersion. O'Neill-type formulae relating the covariant derivatives of spinor fields on the base and fibres to the corresponding spinor field on the total space are derived. From these, formulae for the Dirac operators are obtained and applied to prove results on Dirac morphisms in cases so far unpublished. The second part (comprising chapters 7-9) contains the basic theory and known classifications of G2-structures and Spin+ 7 -structures in seven and eight dimensions. Formulae relating the covariant derivatives of the canonical forms and spinor fields are derived in each case. These are used to confirm the expected result that the form and spinorial classifications coincide. The mean curvature vector of associative and Cayley submanifolds of these spaces is calculated in terms of naturally-occurring tensor fields given by the structures. The final part of the thesis (comprising chapter 10) is an attempt to unify the first two parts. A certain `7-complex' quotient is described, which is analogous to the well-known hyper-Kahler quotient construction. This leads to insight into other possible interesting quotients which are correspondingly analogous to quaternionic-Kahler quotients, and these are speculated upon with a view to further research.
APA, Harvard, Vancouver, ISO, and other styles
33

Takata, Doman. "A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds." Kyoto University, 2018. http://hdl.handle.net/2433/232217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sambou, Diomba. "Accumulation spectrale pour les Hamiltoniens quantiques magnétiques." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-01059664.

Full text
Abstract:
Dans cette thèse on s'interesse à l'étude de phénomènes d'accumultation spectrale de certains opérateurs issus de la physique quantique à savoir les opérateurs de Schrödinger, de Pauli, et de Dirac. Typiquement, ces opérateurs apparaissent dans la modélisation de certains problèmes de physique sous forme d'équations d'évolution. Selon les contraintes du problème physique, ils peuvent être associés ou non à un champ magnétique pouvant être constant ou non constant. Le cadre où le champ magnétique est dit admissible est celui que nous allons considérer (en dimension 3). Ce dernier cadre inclut en particulier le cas de champs magnétiques constants. Deux grands thèmes sont essentiellement abordés dans cette thèse : l'étude des résonances près de seuils des Hamiltoniens quantiques cités ci-dessus lorsqu'ils sont perturbés par des potentiels électriques auto-adjoints, et l'étude de leur spectre discret lorsqu'ils sont perturbés par des potentiels électriques non auto-adjoints. Le second thème sera exploré au moyent d'inégalités Lieb-Thirring généralisés.
APA, Harvard, Vancouver, ISO, and other styles
35

Bär, Christian. "Das Spektrum von Dirac-Operatoren." Bonn : [s.n.], 1991. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=003506032&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pfäffle, Frank [Verfasser]. "Eigenwertkonvergenz für Dirac-Operatoren / Frank Pfäffle." Aachen : Shaker, 2003. http://d-nb.info/1179023595/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, Yonne Mi. "Unique continuation theorems for the Dirac operator and the Laplace operator." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14469.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1989.
Title as it appeared in M.I.T. Graduate List, Feb. 1989: Carleman inequalities and strong unique continuation.
Includes bibliographical references (leaf 59).
by Yonne Mi Kim.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
38

Thumstädter, Torsten. "Parameteruntersuchungen an Dirac-Modellen." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10633955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dumais, Guy. "Killing spinors and spectral properties of the Dirac operator." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55442.

Full text
Abstract:
A survey of the spectral properties of the classical Dirac operator on a Riemannian spin manifold is made. Killing spinors, which are special eigenfunctions of the Dirac operator, are studied and necessary conditions for their existence are given. Killing spinors on $ IR sp{n}$, $S sp{n}$ and $H sp{n}$ are also computed explicitly. Finally the transformation law for Dirac operator under conformal change of the metric is computed and a lower bound for the eigenvalues is given.
APA, Harvard, Vancouver, ISO, and other styles
40

Andersson, Linnéa. "Linear-scaling recursive expansion of the Fermi-Dirac operator." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-382829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Richert, Manfred. "Streutheorie für Diracsche Aussenraumaufgaben." Bonn : [Math.-Naturwiss. Fak. der Univ.], 1992. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=005421124&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jakubassa-Amundsen, Doris. "Spectral Theory of the Atomic Dirac Operator in the No-Pair Formalism." Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-23824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tạ, Ngọc Trí. "Results on the number of zero modes of the Weyl-Dirac operator." Thesis, Lancaster University, 2009. http://eprints.lancs.ac.uk/30804/.

Full text
Abstract:
For a given magnetic potential A one can define the Weyl-Dirac operator σ·(-i∇-A) on R³. An L² eigenfunction of σ·(-i∇-A) corresponding to 0 is called a zero mode. In this thesis we will be concerned with the zero mode problem for the Weyl-Dirac operator and some related problems. The main results are: (i) upper bounds for the number of zero modes of the Weyl-Dirac operator in three dimensions when scaling a given magnetic field. A similar version for the Dirac operator in two dimensions is also obtained. There are also related results to estimate the number of zero modes of the massless Dirac operator, and the dimension of the eigenspaces at threshold energies for the Dirac operator with positive mass. (ii) construction of Dirac operators on the unit ball S² of R³ as well as the determination of their spectrum in case of "constant" magnetic fields. We also show another proof for the Aharonov-Casher theorem for S² based on results about spectral properties of Dirac operators that we have obtained. (iii) a formula giving the number of zero modes of the Weyl-Dirac operator for a special magnetic field, which is the result of pullbacks from the "constant" volume form of S². We also obtain a lower bound for the number of zero modes for the Weyl-Dirac operator corresponding to certain scaled magnetic fields; the magnetic fields are parallel to fibres of the Hopf fibration (pulled-back to R³ using inverse stereographic projection).
APA, Harvard, Vancouver, ISO, and other styles
44

Roos, Saskia [Verfasser]. "The Dirac operator under collapse with bounded curvature and diameter / Saskia Roos." Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1170777902/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hachem, Ghias. "Théorie spectrale de l'opérateur de Dirac avec un potentiel électromagnétique à croissance linéaire à l'infini." Paris 13, 1988. http://www.theses.fr/1988PA132008.

Full text
Abstract:
L'objet de cette thèse est la théorie spectrale de l'opérateur de Dirac associé à un champ électrique extérieur. Notre approche est celle de la théorie de la diffusion. Dans un premier temps on étudie l'opérateur non perturbe dont le potentiel est une fonction linéaire d'une variable (champ électrique constant). On construit alors les fonctions propres généralisées de cet opérateur, pour cela on étudie une équation différentielle du second ordre dépendant d'un paramètre. On donne ensuite des estimations pour les fonctions propres généralisées et le théorème d'absorption limite. Dans la deuxième partie on étudie les perturbations de cet opérateur de base par des potentiels de courte portée, on donne une description du spectre de ces opérateurs, on obtient la représentation spectrale de ces opérateurs ainsi que des estimations montrant la décroissance dans le temps des états de diffusion.
APA, Harvard, Vancouver, ISO, and other styles
46

Downes, Robert James. "Cosserat elasticity, spectral theory of first order systems, and the massless Dirac operator." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1417503/.

Full text
Abstract:
This thesis is concerned with the study of the massless Dirac operator in dimension three and is, in part, based upon [12, 22, 21, 26, 25]. An introduction is given in Chapter 1. In Chapter 2 we study a special version of Cosserat elasticity, with deformations induced by rotations only, and no displacements. We prove that for a particular choice of elastic moduli and in the stationary setting (harmonic dependence on time) our mathematical model reduces to the massless Dirac equation. Chapter 3 contains a description of the progress recently made in the spectral theory of first order systems, with a particular focus on dimension three presented in Chapter 4. We prove in Chapter 5 that the second asymptotic coefficient of the counting function of a first order system has the geometric meaning of the massless Dirac action. Finally, in Chapter 6 we examine the spectral asymmetry of the massless Dirac operator. We work on a 3-torus equipped, initially, with a Euclidean metric and consider the behaviour of the spectrum under a perturbation of the metric. We derive an explicit asymptotic formula for the eigenvalue closest to zero.
APA, Harvard, Vancouver, ISO, and other styles
47

Smith, Douglas Andrew. "Structure of the QCD vacuum and low-lying eigenmodes of the Wilson-Dirac operator." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/11413.

Full text
Abstract:
This thesis details a study of the vacuum structure of QCD using the tool of lattice gauge theory. Chapter 1 gives an introduction to path integrals, semi-classical approximations to path integrals, instantons, topological charge and instanton phenomenology. Chapter 2 introduces lattice gauge theory and the problems of studying topological charge on the lattice. The cooling method and its pitfalls are discussed and details are given of a study undertaken of under-relaxed cooling. In Chapter 3 the algorithms that were developed to study the instantons on the cooled configurations are discussed. Chapter 4 gives the results for the structure of the vacuum: size distributions, spatial distributions, correlations between charges, and scaling of distributions with the lattice spacing. Chapter 5 discusses an exploratory study of the low-lying eigenmodes of the Wilson-Dirac operator. The zero-modes of both the unimproved and improved operators on cold and heated instantons are calculated and the lattice artefacts investigated. Chapter 6 contains my conclusions and suggestions for future work.
APA, Harvard, Vancouver, ISO, and other styles
48

Farabegoli, Nicolas. "Implementazione ottimizata dell'operatore di Dirac su GPGPU." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20356/.

Full text
Abstract:
Nelle applicazioni Lattice QCD l'operatore di Dirac rappresenta una delle principali operazioni, ottimizzarne l'efficienza si riflette in un incremento delle prestazioni globali dell'algoritmo. In tal senso i Tensor Core rappresentano una soluzione che incrementa le prestazioni del calcolo dell'operatore di Dirac ottimizzando in particolare la moltiplicazione tra matrici e vettori. Si è analizzata nel dettaglio l'architettura dei Tensor Core studiando il modello di esecuzione e il layout della memoria. Sono quindi state formulate e analizzate in dettaglio alcune soluzioni che sfruttano i Tensor Core per accelerare l'operatore di Dirac.
APA, Harvard, Vancouver, ISO, and other styles
49

Becker-Bender, Julia [Verfasser], and Ilka [Akademischer Betreuer] Agricola. "Dirac-Operatoren und Killing-Spinoren mit Torsion / Julia Becker-Bender. Betreuer: Ilka Agricola." Marburg : Philipps-Universität Marburg, 2013. http://d-nb.info/103231477X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Müller, David [Verfasser], and Heinz [Akademischer Betreuer] Siedentop. "Projizierte gestörte Coulomb-Dirac-Operatoren und ihre Eigenwerte / David Müller ; Betreuer: Heinz Siedentop." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1164376950/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!