Academic literature on the topic 'Direct C-H Functionalization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Direct C-H Functionalization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Direct C-H Functionalization"

1

Ye, Zhishi, Kristen E. Gettys, and Mingji Dai. "Opportunities and challenges for direct C–H functionalization of piperazines." Beilstein Journal of Organic Chemistry 12 (April 13, 2016): 702–15. http://dx.doi.org/10.3762/bjoc.12.70.

Full text
Abstract:
Piperazine ranks within the top three most utilized N-heterocyclic moieties in FDA-approved small-molecule pharmaceuticals. Herein we summarize the current synthetic methods available to perform C–H functionalization on piperazines in order to lend structural diversity to this privileged drug scaffold. Multiple approaches such as those involving α-lithiation trapping, transition-metal-catalyzed α-C–H functionalizations, and photoredox catalysis are discussed. We also highlight the difficulties experienced when successful methods for α-C–H functionalization of acyclic amines and saturated mono-nitrogen heterocyclic compounds (such as piperidines and pyrrolidines) were applied to piperazine substrates.
APA, Harvard, Vancouver, ISO, and other styles
2

Čorić, Ilija, and Jyoti Dhankhar. "Introduction to Spatial Anion Control for Direct C–H Arylation." Synlett 33, no. 06 (February 1, 2022): 503–12. http://dx.doi.org/10.1055/s-0040-1719860.

Full text
Abstract:
AbstractC–H activation of functionally rich molecules without the need for directing groups promises shorter organic syntheses and late-stage diversification of molecules for drug discovery. We highlight recent examples of palladium-catalyzed nondirected functionalization of C–H bonds in arenes as limiting substrates with a focus on the development of the concept of spatial anion control for direct C–H arylation.1 C–H Activation and the CMD Mechanism2 Nondirected C–H Functionalizations of Arenes as Limiting Substrates3 Nondirected C–H Arylation4 Spatial Anion Control for Direct C–H Arylation5 Coordination Chemistry with Spatial Anion Control6 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
3

Verbitskiy, Egor, Gennady Rusinov, Oleg Chupakhin, and Valery Charushin. "Recent Advances in Direct C–H Functionalization of Pyrimidines." Synthesis 50, no. 02 (December 14, 2017): 193–210. http://dx.doi.org/10.1055/s-0036-1589520.

Full text
Abstract:
Data spanning the period 2000–2017 on the direct C–H functionalization of pyrimidines are collected and discussed in this review. This demonstrates the surge of interest and creativity that this field of chemistry has experienced during the last two decades. Plausible applications of highly functionalized pyrimidines are also discussed.1 Introduction2 Transition-Metal-Catalyzed C–H Functionalization of Pyrimidine Derivatives3 Transition-Metal-Free Direct C–H Functionalization of Pyrimidine Derivatives4 Deprotonative Metalation of Pyrimidine Derivatives5 Conclusions
APA, Harvard, Vancouver, ISO, and other styles
4

Qiu, Guanyinsheng, and Jie Wu. "Transition metal-catalyzed direct remote C–H functionalization of alkyl groups via C(sp3)–H bond activation." Organic Chemistry Frontiers 2, no. 2 (2015): 169–78. http://dx.doi.org/10.1039/c4qo00207e.

Full text
Abstract:
This review is focused on the recent advances in the transition metal-catalyzed direct remote C–H-functionalization of alkyl groups via C(sp3)–H bond activation. In general, carboxamide/ester-chelated β-functionalization reactions are summarized.
APA, Harvard, Vancouver, ISO, and other styles
5

Dhankhar, Jyoti, and Ilija Čorić. "Direct C–H Arylation." CHIMIA 76, no. 9 (September 21, 2022): 777. http://dx.doi.org/10.2533/chimia.2022.777.

Full text
Abstract:
Bonds between hydrogen and carbon atoms are the most frequent type of bonds in organic molecules. The ability to replace hydrogen atoms by making other types of bonds to carbon atoms can enable simpler access to complex organic molecules by substituting multistep synthetic sequences. The use of transition metal catalysts to activate C–H bonds is particularly attractive as it offers control over the reactivity and selectivity through catalyst design. However, such functionalization includes the difficult breaking of strong C–H bonds that are not activated by the presence of other groups. Additionally, the common presence of a number of C–H bonds in a molecule raises the issue of site-selectivity because differentiation of C–H bonds that are in sterically and electronically similar environments is a challenge. We discuss selected recent developments that are a part of the long-term research interest in mild and selective C–H activation reactions with a focus on the replacement of C–H bonds with C–aryl groups and an emphasis on the work of our group.
APA, Harvard, Vancouver, ISO, and other styles
6

Siddiqui, Rafia, and Rashid Ali. "Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations." Beilstein Journal of Organic Chemistry 16 (February 26, 2020): 248–80. http://dx.doi.org/10.3762/bjoc.16.26.

Full text
Abstract:
In recent years, the research area of direct C–H bond functionalizations was growing exponentially not only due to the ubiquity of inert C–H bonds in diverse organic compounds, including bioactive natural and nonnatural products, but also due to its impact on the discovery of pharmaceutical candidates and the total synthesis of intricate natural products. On the other hand, more recently, the field of photoredox catalysis has become an indispensable and unparalleled research topic in modern synthetic organic chemistry for the constructions of challenging bonds, having the foremost scope in academia, pharmacy, and industry. Therefore, the development of green, simpler, and effective methodologies to accomplish direct C–H bond functionalization is well overdue and highly desirable to the scientific community. In this review, we mainly highlight the impact on, and the utility of, photoredox catalysts in inert ortho and para C–H bond functionalizations. Although a surge of research papers, including reviews, demonstrating C–H functionalizations have been published in this vital area of research, to our best knowledge, this is the first review that focuses on ortho and para C–H functionalizations by photoredox catalysis to provide atom- and step-economic organic transformations. We are certain that this review will act as a promoter to highlight the application of photoredox catalysts for the functionalization of inert bonds in the domain of synthetic organic chemistry.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Ying, Abdol Ghaffar Ebadi, Leila Youseftabar-Miri, Akbar Hassanpour, and Esmail Vessally. "Methods for direct C(sp2)–H bonds azidation." RSC Advances 9, no. 43 (2019): 25199–215. http://dx.doi.org/10.1039/c9ra04534a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Topczewski, Joseph J., and Melanie S. Sanford. "Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis." Chemical Science 6, no. 1 (2015): 70–76. http://dx.doi.org/10.1039/c4sc02591a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walker, Sarah E., James A. Jordan-Hore, David G. Johnson, Stuart A. Macgregor, and Ai-Lan Lee. "Palladium-Catalyzed Direct CH Functionalization of Benzoquinone." Angewandte Chemie International Edition 53, no. 50 (October 10, 2014): 13876–79. http://dx.doi.org/10.1002/anie.201408054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Walker, Sarah E., James A. Jordan-Hore, David G. Johnson, Stuart A. Macgregor, and Ai-Lan Lee. "Palladium-Catalyzed Direct CH Functionalization of Benzoquinone." Angewandte Chemie 126, no. 50 (October 10, 2014): 14096–99. http://dx.doi.org/10.1002/ange.201408054.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Direct C-H Functionalization"

1

Röckl, Johannes Ludwig [Verfasser]. "Novel Concepts in Direct Electrochemical C-H Functionalization / Johannes Ludwig Röckl." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2020. http://d-nb.info/1224896343/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Graczyk, Karolina. "Iron- and Ruthenium-Catalyzed Site-Selective C–C Forming Direct C–H Functionalizations." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://hdl.handle.net/11858/00-1735-0000-0022-5FA5-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jie. "Ruthenium(II)-Catalyzed Direct C−H meta-Alkylations, Alkenylations and Alkyne Annulations." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://hdl.handle.net/11858/00-1735-0000-0022-6072-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kornhaaß, Christoph Frank. "Sustainable Syntheses of Substituted Heterocycles through Ruthenium- and Palladium-Catalyzed Direct C−H Bond Functionalizations." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0023-9911-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hofmann, Nora. "Carboxylate-Assisted Ruthenium-Catalyzed C-H Bond meta-Alkylations and Oxidative Annulations." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://hdl.handle.net/11858/00-1735-0000-0014-D4A4-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sahnoun, Sophian. "C-H fonctionnalisation de purines : synthèse d’inhibiteurs potentiels de la HSP90." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA114803/document.

Full text
Abstract:
Les résistances aux traitements actuels contre le cancer incitent à trouver de nouvelles cibles thérapeutiques. Une de ces cibles, la hsp90 (heat shock protein 90), impliquée dans la maturation de protéines clientes oncogènes, se révèle très prometteuse car son inhibition induit la dégradation de ces protéines par la voie du protéasome.PU3 et PU24S sont des inhibiteurs de la hsp90 de type purine fonctionnalisés en position 8. Dans le but d’identifier des composés encore plus actifs et/ou de nouvelles familles d’inhibiteurs, nous avons développé de nouveaux procédés sélectifs métallo-catalysés permettant l’activation de liaisons C-H de divers hétérocycles, et en particulier des purines (adénines, xanthines). Ces nouvelles approches ont permis un accès direct et simple à de nombreuses purines fonctionnalisées en C-8 par des groupements aromatiques, hetéroaromatiques, éthyléniques et benzyliques
Resistance to current treatments of cancer encourages finding new therapeutical targets. The heat shock protein 90 (hsp90) is a molecular chaperon which regulates the folding of many client proteins associated with all of the six hallmarks of cancer, and helps maintaining their proper conformation. Consequently, the hsp90 has become an exciting new target in cancer drug discovery since the inhibition of its ATPase activity leads to depletion of these client proteins via the proteasomal pathway. PU3 and PU24S are purine-based hsp90 inhibitors functionalized on C-8 position. In the aim to identify more active compounds and/or new subfamilies of inhibitors, we have developed new metal-catalyzed C-H activation processes of various heterocycles including purines and other azoles. These new and simple approaches have allowed the access to numerous C-8 functionalized purines bearing (het)aryl, alkenyl and benzyl moieties
APA, Harvard, Vancouver, ISO, and other styles
7

Rey-Rodriguez, Romain. "Fonctionnalisation directe métallo-catalysée de liaison C-H d’énamides." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2005/document.

Full text
Abstract:
L’objectif de cette thèse de doctorat a été la mise au point de nouvelles méthodes de synthèse pour la fonctionnalisation directe de liaison C-H d’énamide via des réactions métallo-catalysées ou métallo-assistées dans des processus chimio-, régio- et éventuellement énantiosélectifs. Dans un premier temps, nous avons développé la trifluorométhylation d’énamide sélectivement en position C3 via une catalyse au Fe(II) impliquant l’utilisation de nouvelles sources de fluor (réactif de Togni II) et dont le mécanisme radicalaire a pu être mis en avant. Dans un second temps, deux nouvelles méthodes de synthèse impliquant l’utilisation de Fe(II) et Fe(III) ont pu être mises au point pour l’azidation sélective en position C2 ou C3 d’énamide via la difonctionnalisation de ces composés. La synthèse de β-azido alcools ou α-azido esters a ainsi pu être effectuée avec un contrôle diastéréosélectif pour les composés trans. Par la suite, l’étude de la réactivité des nitrènes sur des substrats énamides a permis de mettre au point et de valoriser les réactions d’oxyamidation et de C-H amination via l’insertion sélective de ces nitrènes respectivement sur la double liaison C=C ou bien en position C4 d’énamide. La compétition entre ces deux réactions a alors pu être associée à la nature des substituants présents sur les substrats de départ et plusieurs énamides γ-aminées ainsi que des β-amino éthers ont pu être synthétisés
The aim of this Ph.D thesis was the development of new synthetic methods for the metal-catalysed direct CH functionalization of enamide with chemo-, regio- and possible enantioselectivity. First, we have developped a C3-selective trifluoromethylation of enamide with Fe (II) catalyst involving new sources of fluoride (Togni’s reagent II) with a radical mechanism. Secondly, two new synthetic methods with Fe(II) and Fe(III) were promoted for the selective azidation of enamides respectively at C2 and C3 position involving difunctionalization of the C=C double bond. β-azido alcohols and α-azido esters were then synthesized by controlling the diastereoselectivity for the trans isomer. Finally, studies on the reactivity of nitrenes on enamides allowed us to develop oxyamidation reaction and CH amination with a selective insertion of nitrenes respectively on the double bond C=C or at C4 position. The outcome of the reaction is highly substrate-dependent and several γ-amino enamides and β-amino ethers have been synthesized
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Yingjun. "Sustainable Strategies for Site-Selective C–H Functionalizations of N-Heterocycles." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://hdl.handle.net/11858/00-1735-0000-0022-5DDA-D.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schipper, Derek. "Part 1: Transition Metal Catalyzed Functionalization of Aromatic C-H Bonds / Part 2: New Methods in Enantioselective Synthesis." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20121.

Full text
Abstract:
Part 1: Transition-metal-catalyzed direct transformations of aromatic C-H bonds are emerging as valuable tools in organic synthesis. These reactions are attractive because of they allow for inherently efficient construction of organic building blocks by minimizing the pre-activation of substrates. Of these processes, direct arylation has recently received much attention due to the importance of the biaryl core in medicinal and materials chemistry. Also, alkyne hydroarylation has garnered interest because it allows for the atom-economical synthesis of functionalized alkenes directly from simple arenes and alkynes. Described in this thesis are number of advancements in these areas. First, palladium catalyzed direct arylation of azine N-oxides using synthetically important aryl triflates is described. Interesting reactivity of aryl triflates compared to aryl bromides was uncovered and exploited in the synthesis of a compound that exhibits antimalarial and antimicrobial activity. Also reported is the efficient, direct arylation enabled (formal) synthesis of six thiophene based organic electronic materials in high yields using simple starting materials. Additionally, the site-selective direct arylation of both sp2 and sp3 sites on azine N-oxide substrates is described. The arylation reactions are carried out in either a divergent manner or a sequential manner and is applied to the synthesis of the natural products, Papaverine and Crykonisine. Mechanistic investigations point towards the intimate involvement of the base in the mechanism of these reactions. Next, the rhodium(III)-catalyzed hydroarylation of internal alkynes is described. Good yields are obtained for a variety of alkynes and arenes with excellent regioselectivity for unsymmetrically substituted alkynes. Mechanistic investigations suggest that this reaction proceeds through arene metalation with the cationic rhodium catalyst, which enables challenging intermolecular reactivity. Part 2: Access to single enantiomer compounds is a fundamental goal in organic chemistry and despite remarkable advances in enantioselective synthesis, their preparation remains a challenge. Kinetic resolution of racemic products is an important method to access enantioenriched compounds, especially when alternative methods are scarce. Described in this thesis is the resolution of tertiary and secondary alcohols, which arise from ketone and aldehyde aldol additions. The method is technically simple, easily scalable, and provides tertiary and secondary alcohols in high enantiomeric ratios. A rationale for the unique reactivity/selectivity associated with (1S,2R)-N-methylephedrine in the resolution is proposed. Organocatalysis is a rapidly developing, powerful field for the construction of enantioenriched organic molecules. Described here is a complimentary class of organocatalysis using simple aldehydes as temporary tethers to perform challenging formally intermolecular reactions at room temperature. This strategy allows for the enantioselective, intermolecular cope-type hydroamination of allylic amines with hydroxyl amines. Also, interesting catalytic reactivity for dichloromethane is revealed.
APA, Harvard, Vancouver, ISO, and other styles
10

Vabre, Roxane. "Fonctionnalisation directe de liaisons C-H et couplages croisés pour la formation de liaisons C-C et C-N : synthèse de purines 6,8,9-trisubstituées." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00923198.

Full text
Abstract:
La grande variété de propriétés biologiques associées au noyau purine en fait une structure privilégiée pour la conception et la synthèse de nouvelles molécules à visée thérapeutique. Cette spécificité est étroitement liée à la grande diversité de substituants pouvant être introduits sur les différentes positions du noyau purine et en particulier sur C2, C6, C8 et N9. Par conséquent, le développement de méthodes de fonctionnalisation rapides de cette famille de composés est d'un grand intérêt synthétique. Nous nous sommes focalisés sur la formation de liaisons C-C et C-N sur les positions 6 et 8 du noyau purine pour pouvoir présenter de nouveaux outils de synthèse permettant d'introduire une plus grande diversité fonctionnelle. D'une part, nous avons étudié la fonctionnalisation directe de liaisons C-H de purines, sujet encore peu exploré. En effet, de nos jours, le traditionnel couplage croisé (Negishi, Suzuki-Miyaura), utilisé pour la création de liaisons C-C, se voit de plus en plus concurrencé par ces réactions puisqu'elles ne nécessitent pas la préparation d'un partenaire organométallique. Ce sont des réactions dites à économie d'atomes. En nous basant sur l'expérience du laboratoire dans le domaine de la fonctionnalisation directe de liaisons C-H, nous avons envisagé l'alcénylation et l'alcynylation directes en position 8 de la purine, les motifs alcényle et alcynyle étant présents dans certaines purines d'intérêt biologique. D'autre part, nous nous sommes intéressés à deux méthodes de couplage croisé pallado-catalysé permettant la formation de liaisons C-N et C-C : le couplage de Buchwald - Hartwig entre une 8-iodopurine et des amides ou des amines aromatiques, et le couplage de Liebeskind - Srogl entre une 6-thioétherpurine et divers acides boroniques.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Direct C-H Functionalization"

1

1945-, Fuchs Philip L., ed. Reagents for direct functionalization of C-H bonds. Chichester, England: John Wiley, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fuchs, Philip L. Handbook of Reagents for Organic Synthesis , Reagents for Direct Functionalization of C-H Bonds. Wiley, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Taber, Douglass F. Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.001.0001.

Full text
Abstract:
Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like its predecessors, this reference leads readers quickly to the field's more important recent developments. Two years of Douglass F. Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all four volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method.
APA, Harvard, Vancouver, ISO, and other styles
4

Taber, Douglass. Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.001.0001.

Full text
Abstract:
Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like the first two books in this series, Organic Synthesis: State of the Art 2003-2005 and Organic Synthesis: State of the Art 2005-2007, this reference leads readers quickly to the most important recent developments. Two years of Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all three volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method. It details and analyzes more than twenty complex total syntheses, including the Sammakia synthesis of the Macrolide RK-397, the Ley synthesis of Rapamycin, and the Kobayashi synthesis of (-)-Norzoanthamine.
APA, Harvard, Vancouver, ISO, and other styles
5

Kapdi, Anant R., and Debabrata Maiti. Strategies for Palladium-Catalyzed Non-Directed and Directed C-H Bond Functionalization. Elsevier Science & Technology Books, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kapdi, Anant R., and Debabrata Maiti. Strategies for Palladium-Catalyzed Non-Directed and Directed C Bond H Bond Functionalization. Elsevier, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taber, Douglass F., and Tristan Lambert. Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.001.0001.

Full text
Abstract:
Organic synthesis is a vibrant and rapidly evolving field; chemists can now cyclize alkenes directly onto enones. Like the first five books in this series, Organic Synthesis: State of the Art 2013-2015 will lead readers quickly to the most important recent developments in a research area. This series offers chemists a way to stay abreast of what's new and exciting in organic synthesis. The cumulative reaction/transformation index of 2013-2015 outlines all significant new organic transformations over the past twelve years. Future volumes will continue to come out every two years. The 2013-2015 volume features the best new methods in subspecialties such as C-O, C-N and C-C ring construction, catalytic asymmetric synthesis, selective C-H functionalization, and enantioselective epoxidation. This text consolidates two years of Douglass Taber's popular weekly online column, "Organic Chemistry Highlights" as featured on the organic-chemistry.org website and also features cumulative indices of all six volumes in this series, going back twelve years.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Direct C-H Functionalization"

1

Zhou, Taigang, and Zhang-Jie Shi. "Silver-Mediated Direct sp3 C–H Bond Functionalization." In Topics in Organometallic Chemistry, 115–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bellina, Fabio. "Recent Developments in Pd-Catalyzed Direct Arylations of Heteroarenes with Aryl Halides." In C-H Bond Activation and Catalytic Functionalization I, 77–102. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mousseau, James J., and Antonia F. Stepan. "Direct C–H Functionalization Approaches to Pharmaceutically Relevant Molecules." In Methods in Pharmacology and Toxicology, 269–96. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-0716-1579-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Jeung Gon, Kwangmin Shin, and Sukbok Chang. "Rh(III)- and Ir(III)-Catalyzed Direct C–H Bond Transformations to Carbon–Heteroatom Bonds." In C-H Bond Activation and Catalytic Functionalization I, 29–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shevelev, Svyatoslav, and Alexey Starosotnikov. "Direct Functionalization of C–H Fragments in Nitroarenes as a Synthetic Pathway to Condensed N-Heterocycles." In Topics in Heterocyclic Chemistry, 107–54. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/7081_2013_112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, Jin, and Chengjian Zhu. "Recent Advances in Non-directed C(sp3)–H Bond Functionalization." In SpringerBriefs in Molecular Science, 25–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49496-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shang, Rui. "Iron-Catalyzed Directed C(sp2)–H Bond Functionalization with Organoboron Compounds." In Springer Theses, 197–216. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3193-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Taber, Douglass F. "C–H Functionalization." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0021.

Full text
Abstract:
Konstantin P. Bryliakov of the Boreskov Institute of Catalysis devised (Org. Lett. 2012, 14, 4310) a manganese catalyst for the selective tertiary hydroxylation of 1 to give 2. Note that the electron-withdrawing Br deactivates the alternative methine H. Bhisma K. Patel of the Indian Institute of Technology, Guwahati selectively oxidized (Org. Lett. 2012, 14, 3982) a benzylic C–H of 3 to give the corresponding benzoate 4. Dalibor Sames of Columbia University cyclized (J. Org. Chem. 2012, 77, 6689) 5 to 6 by intramolecular hydride abstraction followed by recombination. Thomas Lectka of Johns Hopkins University showed (Angew. Chem. Int. Ed. 2012, 51, 10580) that direct C–H fluorination of 7 occurred predominantly at carbons 3 and 5. John T. Groves of Princeton University reported (Science 2012, 337, 1322) an alternative manganese porphyrin catalyst (not illustrated) for direct fluorination. C–H functionalization can also be mediated by a proximal functional group. John F. Hartwig of the University of California, Berkeley effected (J. Am. Chem. Soc. 2012, 134, 12422) Ir-mediated borylation of an ether 9 in the position β to the oxygen to give 10. Uttam K. Tambar of the UT Southwestern Medical Center devised (J. Am. Chem. Soc. 2012, 134, 18495) a protocol for the net enantioselective amination of 11 to give 12. Conversion of a C–H bond to a C–C bond can be carried out in an intramolecular or an intermolecular sense. Kilian Muñiz of the Catalan Institution for Research and Advanced Studies cyclized (J. Am. Chem. Soc. 2012, 134, 15505) the terminal alkene 13 directly to the cyclopentene 15. Olivier Baudoin of Université Claude Bernard Lyon 1 closed (Angew. Chem. Int. Ed. 2012, 51, 10399) the pyrrolidine ring of 17 by selective activation of a methyl C–H of 16. Jeremy A. May of the University of Houston found (J. Am. Chem. Soc. 2012, 134, 17877) that the Rh carbene derived from 18 inserted into the distal alkyne to give a new Rh carbene 19, which in turn inserted into a C–H bond adjacent to the ether oxygen to give 20.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, P., and G. Liu. "1.4 Copper-Catalyzed C—H Functionalization via Radicals." In Base-Metal Catalysis 1. Stuttgart: Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/sos-sd-238-00075.

Full text
Abstract:
AbstractThe direct functionalization of C—H bonds is highly attractive due to its efficiency for converting simple molecules into a wide range of valuable organic compounds. Among available strategies, radical C—H functionalization via hydrogen-atom transfer (HAT) represents one of the most powerful approaches and allows a unique profile of reactivity and selectivity. In this review, copper-catalyzed C—H functionalizations via radicals are summarized, including C—H cyanation, arylation, alkynylation, fluoroalkylation, amination, and oxygenation. It is worth noting that the combination of chiral ligands and chiral phosphoric acids with copper catalysis enables the enantioselective functionalization of radicals.
APA, Harvard, Vancouver, ISO, and other styles
10

Taber, Douglass F. "C–H Functionalization." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0019.

Full text
Abstract:
Masayuki Inoue of the University of Tokyo oxidized (Tetrahedron Lett. 2011, 52, 4654) the alkyl benzene 1 to the nitrate 2, which could be carried on to the amide 5, the nitrile 6, the alcohol 7, or the azide 8. X. Peter Zhang of the University of South Florida developed (Chem. Sci. 2012, 2, 2361) a Co catalyst for the cyclization of 7 to 8. Justin Du Bois of Stanford University reported (J. Am. Chem. Soc. 2011, 133, 17207) the oxidative cyclization of the sulfamate corresponding to 7 using a Ru catalyst. Seongmin Lee of the University of Texas showed (Org. Lett. 2011, 13, 4766) that the oxidative cyclization of 9 gave the amine 10 with high diastereoselectivity. Fabrizio Fabris of the Università di Venezia used (Tetrahedron Lett. 2011, 52, 4478) a Ru catalyst to oxidize 11 to the ketone 12. Ying-Yeung Yeung of the National University of Singapore found (Org. Lett. 2011, 13, 4308) that hypervalent iodine was sufficient to oxidize 13 to the ketone 14. Huanfeng Jiang of the South China University of Technology methoxycarbonylated (Chem. Commun. 2011, 47, 12224) 15 under Pd catalysis to give 16. Professor Inoue found (Org. Lett. 2011, 13, 5928) that the oxidative cyanation of 17 proceeded with high diastereoselectivity to give 18. Mamoru Tobisu and Naoto Chatani of Osaka University activated (J. Am. Chem. Soc. 2011, 133, 12984) 19 with a Pd catalyst to enable coupling with 20 to give 21. Rh-mediated intramolecular insertion is well known to proceed efficiently into secondary and tertiary C–H bonds. A. Srikrishna of the Indian Institute of Science, Bangalore found (Synlett 2011, 2343) that insertion into the methyl C–H of 22 also worked smoothly to deliver 23. The macrocyclic oligopeptide valinomycin 24 has nine isopropyl groups. It is remarkable, as observed (Org. Lett. 2011, 13, 5096) by Cosimo Annese of the Università di Bari and Paul G. Williard of Brown University, that direct oxidation of 24 with methyl(trifluoromethyl) dioxirane in acetone specifically hydroxylated at 8 (45.5%, our numbering), 7 (28.5%), and 6 (26%).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography