Journal articles on the topic 'Direct cardiac reprogramming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Direct cardiac reprogramming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Qian, Li, and Deepak Srivastava. "Direct Cardiac Reprogramming." Circulation Research 113, no. 7 (2013): 915–21. http://dx.doi.org/10.1161/circresaha.112.300625.
Full textSadahiro, Taketaro, Shinya Yamanaka, and Masaki Ieda. "Direct Cardiac Reprogramming." Circulation Research 116, no. 8 (2015): 1378–91. http://dx.doi.org/10.1161/circresaha.116.305374.
Full textBruneau, Benoit G. "Direct Reprogramming for Cardiac Regeneration." Circulation Research 110, no. 11 (2012): 1392–94. http://dx.doi.org/10.1161/circresaha.112.270637.
Full textKim, Junyeop, Yujung Chang, Yerim Hwang, Sumin Kim, Yu-Kyoung Oh, and Jongpil Kim. "Graphene Nanosheets Mediate Efficient Direct Reprogramming into Induced Cardiomyocytes." Journal of Biomedical Nanotechnology 18, no. 9 (2022): 2171–82. http://dx.doi.org/10.1166/jbn.2022.3416.
Full textChen, Olivia, and Li Qian. "Direct Cardiac Reprogramming: Advances in Cardiac Regeneration." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/580406.
Full textZhang, Zhentao, Jesse Villalpando, Wenhui Zhang, and Young-Jae Nam. "Chamber-Specific Protein Expression during Direct Cardiac Reprogramming." Cells 10, no. 6 (2021): 1513. http://dx.doi.org/10.3390/cells10061513.
Full textAmbroise, Rachelle, Paige Takasugi, Jiandong Liu, and Li Qian. "Direct Cardiac Reprogramming in the Age of Computational Biology." Journal of Cardiovascular Development and Disease 11, no. 9 (2024): 273. http://dx.doi.org/10.3390/jcdd11090273.
Full textTani, Hidenori, Taketaro Sadahiro, and Masaki Ieda. "Direct Cardiac Reprogramming: A Novel Approach for Heart Regeneration." International Journal of Molecular Sciences 19, no. 9 (2018): 2629. http://dx.doi.org/10.3390/ijms19092629.
Full textTang, Yawen, Sajesan Aryal, Xiaoxiao Geng, et al. "TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming." Circulation 146, no. 20 (2022): 1518–36. http://dx.doi.org/10.1161/circulationaha.122.059713.
Full textPerveen, Sadia, Roberto Vanni, Marco Lo Iacono, Raffaella Rastaldo, and Claudia Giachino. "Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration." Cells 12, no. 8 (2023): 1166. http://dx.doi.org/10.3390/cells12081166.
Full textSadahiro, Taketaro. "Direct Cardiac Reprogramming ― Converting Cardiac Fibroblasts to Cardiomyocytes ―." Circulation Reports 1, no. 12 (2019): 564–67. http://dx.doi.org/10.1253/circrep.cr-19-0104.
Full textIeda, Masaki. "Direct cardiac reprogramming by defined factors." Inflammation and Regeneration 33, no. 4 (2013): 190–96. http://dx.doi.org/10.2492/inflammregen.33.190.
Full textEngel, James L., and Reza Ardehali. "Direct Cardiac Reprogramming: Progress and Promise." Stem Cells International 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1435746.
Full textKurotsu, Shota, Takeshi Suzuki, and Masaki Ieda. "Mechanical stress regulates cardiac direct reprogramming." Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (2018): OR15–1. http://dx.doi.org/10.1254/jpssuppl.wcp2018.0_or15-1.
Full textOsakabe, Rina, Takeshi Suzuki, and Masaki Ieda. "Heart repair using direct cardiac reprogramming." Folia Pharmacologica Japonica 150, no. 6 (2017): 276–81. http://dx.doi.org/10.1254/fpj.150.276.
Full textSrivastava, Deepak, and Penghzi Yu. "Recent advances in direct cardiac reprogramming." Current Opinion in Genetics & Development 34 (October 2015): 77–81. http://dx.doi.org/10.1016/j.gde.2015.09.004.
Full textIeda, Masaki. "Direct Cardiac Reprogramming for Regenerative Medicine." Journal of Cardiac Failure 21, no. 10 (2015): S160. http://dx.doi.org/10.1016/j.cardfail.2015.08.093.
Full textKurotsu, Shota, Takeshi Suzuki, and Masaki Ieda. "Direct Reprogramming, Epigenetics, and Cardiac Regeneration." Journal of Cardiac Failure 23, no. 7 (2017): 552–57. http://dx.doi.org/10.1016/j.cardfail.2017.05.009.
Full textVaseghi, Haley, Jiandong Liu, and Li Qian. "Molecular barriers to direct cardiac reprogramming." Protein & Cell 8, no. 10 (2017): 724–34. http://dx.doi.org/10.1007/s13238-017-0402-x.
Full textBektik, Emre, and Ji-dong Fu. "Ameliorating the Fibrotic Remodeling of the Heart through Direct Cardiac Reprogramming." Cells 8, no. 7 (2019): 679. http://dx.doi.org/10.3390/cells8070679.
Full textWang, Li, Hong Ma, Peisen Huang, et al. "Down-regulation of Beclin1 promotes direct cardiac reprogramming." Science Translational Medicine 12, no. 566 (2020): eaay7856. http://dx.doi.org/10.1126/scitranslmed.aay7856.
Full textMuniyandi, Priyadharshni, Toru Maekawa, Tatsuro Hanajiri, and Vivekanandan Palaninathan. "Direct Cardiac Reprogramming with Engineered miRNA Scaffolds." Current Pharmaceutical Design 26, no. 34 (2020): 4285–303. http://dx.doi.org/10.2174/1381612826666200327161112.
Full textSong, Seuk Young, Jin Yoo, Seokhyeong Go, et al. "Cardiac-mimetic cell-culture system for direct cardiac reprogramming." Theranostics 9, no. 23 (2019): 6734–44. http://dx.doi.org/10.7150/thno.35574.
Full textPaoletti, Camilla, Elena Marcello, Maria Luna Melis, Carla Divieto, Daria Nurzynska, and Valeria Chiono. "Cardiac Tissue-like 3D Microenvironment Enhances Route towards Human Fibroblast Direct Reprogramming into Induced Cardiomyocytes by microRNAs." Cells 11, no. 5 (2022): 800. http://dx.doi.org/10.3390/cells11050800.
Full textDoppler, Stefanie, Marcus-André Deutsch, Rüdiger Lange, and Markus Krane. "Direct Reprogramming—The Future of Cardiac Regeneration?" International Journal of Molecular Sciences 16, no. 8 (2015): 17368–93. http://dx.doi.org/10.3390/ijms160817368.
Full textKojima, Hidenori, and Masaki Ieda. "Discovery and progress of direct cardiac reprogramming." Cellular and Molecular Life Sciences 74, no. 12 (2017): 2203–15. http://dx.doi.org/10.1007/s00018-017-2466-4.
Full textTalkhabi, Mahmood, Elmira Rezaei Zonooz, and Hossein Baharvand. "Boosters and barriers for direct cardiac reprogramming." Life Sciences 178 (June 2017): 70–86. http://dx.doi.org/10.1016/j.lfs.2017.04.013.
Full textWang, Li, Peisen Huang, David Near, et al. "Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming." Cells 9, no. 2 (2020): 268. http://dx.doi.org/10.3390/cells9020268.
Full textXiong, Ziyan, and Yuanlin Lei. "Research Progress and Prospects of Direct Cardiac Reprogramming Technology." Journal of Contemporary Medical Practice 7, no. 4 (2025): 26–29. https://doi.org/10.53469/jcmp.2025.07(04).06.
Full textPassaro, Fabiana, Gianluca Testa, Luigi Ambrosone, et al. "Nanotechnology-Based Cardiac Targeting and Direct Cardiac Reprogramming: The Betrothed." Stem Cells International 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/4940397.
Full textAdams, Emma, Rachel McCloy, Ashley Jordan, Kaitlin Falconer, and Iain M. Dykes. "Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart." Journal of Cardiovascular Development and Disease 8, no. 7 (2021): 72. http://dx.doi.org/10.3390/jcdd8070072.
Full textGhazizadeh, Z., H. Rassouli, H. Fonoudi, et al. "Direct reprogramming of human fibroblasts to a cardiac fate using reprogramming proteins." Cytotherapy 16, no. 4 (2014): S39. http://dx.doi.org/10.1016/j.jcyt.2014.01.134.
Full textBaksh, Syeda Samara, and Conrad P. Hodgkinson. "Conservation of miR combo based direct cardiac reprogramming." Biochemistry and Biophysics Reports 31 (September 2022): 101310. http://dx.doi.org/10.1016/j.bbrep.2022.101310.
Full textGuo, Chuner, Kishan Patel, and Li Qian. "Direct Somatic Cell Reprogramming: Treatment of Cardiac Diseases." Current Gene Therapy 13, no. 2 (2013): 133–38. http://dx.doi.org/10.2174/1566523211313020007.
Full textGuo, Chuner, Kishan Patel, and Li Qian. "Direct Somatic Cell Reprogramming: Treatment of Cardiac Diseases." Current Gene Therapy 999, no. 999 (2013): 1–7. http://dx.doi.org/10.2174/15665232113139990023.
Full textSadahiro, Taketaro, and Masaki Ieda. "Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation." Keio Journal of Medicine 69, no. 3 (2020): 49–58. http://dx.doi.org/10.2302/kjm.2019-0008-oa.
Full textGarbutt, Tiffany A., Yang Zhou, Benjamin Keepers, Jiandong Liu, and Li Qian. "An Optimized Protocol for Human Direct Cardiac Reprogramming." STAR Protocols 1, no. 1 (2020): 100010. http://dx.doi.org/10.1016/j.xpro.2019.100010.
Full textInagawa, Kohei, and Masaki Ieda. "Direct Reprogramming of Mouse Fibroblasts into Cardiac Myocytes." Journal of Cardiovascular Translational Research 6, no. 1 (2012): 37–45. http://dx.doi.org/10.1007/s12265-012-9412-5.
Full textBatty, Jonathan A., Jose A. C. Lima, and Vijay Kunadian. "Direct cellular reprogramming for cardiac repair and regeneration." European Journal of Heart Failure 18, no. 2 (2015): 145–56. http://dx.doi.org/10.1002/ejhf.446.
Full textYamada, Yu, Taketaro Sadahiro, and Masaki Ieda. "Development of direct cardiac reprogramming for clinical applications." Journal of Molecular and Cellular Cardiology 178 (May 2023): 1–8. http://dx.doi.org/10.1016/j.yjmcc.2023.03.002.
Full textBektik, Emre, Yu Sun, Adrienne T. Dennis, et al. "Inhibition of CREB-CBP Signaling Improves Fibroblast Plasticity for Direct Cardiac Reprogramming." Cells 10, no. 7 (2021): 1572. http://dx.doi.org/10.3390/cells10071572.
Full textLiu, Liu, Yijing Guo, Zhaokai Li, and Zhong Wang. "Improving Cardiac Reprogramming for Heart Regeneration in Translational Medicine." Cells 10, no. 12 (2021): 3297. http://dx.doi.org/10.3390/cells10123297.
Full textLópez-Muneta, Leyre, Josu Miranda-Arrubla, and Xonia Carvajal-Vergara. "The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety?" International Journal of Molecular Sciences 21, no. 21 (2020): 7950. http://dx.doi.org/10.3390/ijms21217950.
Full textZhou, Yang, Sahar Alimohamadi, Li Wang, et al. "A Loss of Function Screen of Epigenetic Modifiers and Splicing Factors during Early Stage of Cardiac Reprogramming." Stem Cells International 2018 (2018): 1–14. http://dx.doi.org/10.1155/2018/3814747.
Full textMuniyandi, Priyadharshni, Vivekanandan Palaninathan, Tatsuro Hanajiri, and Toru Maekawa. "Direct Cardiac Epigenetic Reprogramming through Codelivery of 5′Azacytidine and miR-133a Nanoformulation." International Journal of Molecular Sciences 23, no. 23 (2022): 15179. http://dx.doi.org/10.3390/ijms232315179.
Full textEngel, James L., and Reza Ardehali. "Sendai virus based direct cardiac reprogramming: what lies ahead?" Stem Cell Investigation 5 (October 2018): 37. http://dx.doi.org/10.21037/sci.2018.10.02.
Full textXie, Yifang, Ben Van Handel, Li Qian, and Reza Ardehali. "Recent advances and future prospects in direct cardiac reprogramming." Nature Cardiovascular Research 2, no. 12 (2023): 1148–58. http://dx.doi.org/10.1038/s44161-023-00377-w.
Full textTendean, Marshel, Yudi Her Oktaviono, and Ferry Sandra. "Cardiomyocyte Reprogramming: A Potential Strategy for Cardiac Regeneration." Molecular and Cellular Biomedical Sciences 1, no. 1 (2017): 1. http://dx.doi.org/10.21705/mcbs.v1i1.5.
Full textSadahiro, Taketaro. "Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming." Regenerative Therapy 11 (December 2019): 95–100. http://dx.doi.org/10.1016/j.reth.2019.06.004.
Full textTesta, Gianluca, Giorgia Di Benedetto, and Fabiana Passaro. "Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration." International Journal of Molecular Sciences 22, no. 17 (2021): 9517. http://dx.doi.org/10.3390/ijms22179517.
Full text