Journal articles on the topic 'Direct current magnetic field'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Direct current magnetic field.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhyltsov, A. V., and V. V. Lyktei. "MAGNETIC FIELD CALCULATION OF BRUSHLESS DIRECT CURRENT MOTOR WITH SMOOTH STATOR BY SECONDARY SOURCES METHOD." Tekhnichna Elektrodynamika 2018, no. 5 (2018): 7–10. http://dx.doi.org/10.15407/techned2018.05.007.
Full textAkhmadjonova, Kholisa Samatillo qizi. "EVELOPMENT OF VIRTUAL LABORATORY WORK ON THE TOPIC "DIRECT CURRENT MAGNETIC FIELD" (using the LabVIEW program)." International journal of advanced research in education, technology and management 2, no. 6 (2023): 356–64. https://doi.org/10.5281/zenodo.8053054.
Full textNonoyama, Shinji, and Akira Oguri. "Direct calculation of nonequilibrium current in a magnetic field." Physica B: Condensed Matter 284-288 (July 2000): 1874–75. http://dx.doi.org/10.1016/s0921-4526(99)02916-6.
Full textWALUYO, WALUYO, Lita LIDYAWATI, ROHANA ROHANA, and Mochamad Sanny HERMAWAN. "Comparisons of Rice Seed Growths Due to Alternating and Direct Current Electric and Magnetic Field Influences." Electrotehnica, Electronica, Automatica 72, no. 2 (2024): 41–53. http://dx.doi.org/10.46904/eea.23.72.2.1108005.
Full textFroment, C., V. Krasnoselskikh, T. Dudok de Wit, et al. "Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe." Astronomy & Astrophysics 650 (June 2021): A5. http://dx.doi.org/10.1051/0004-6361/202039806.
Full textMurata, H. "Magnetic field intensification and formation of field-aligned current in a non-uniform magnetic field." Journal of Plasma Physics 46, no. 1 (1991): 29–48. http://dx.doi.org/10.1017/s0022377800015932.
Full textSlinkman, David, Fred Braid, and Richard Sacks. "Magnetic-field modulation of a two-electrode direct-current plasma." Spectrochimica Acta Part B: Atomic Spectroscopy 45, no. 11 (1990): 1211–23. http://dx.doi.org/10.1016/0584-8547(90)80065-q.
Full textXu, Xian Jin, Hao Da Chen, Zhi Yong Yang, Shi Chao Hu, and Yu Yan. "Magnetic linear driving method for high-voltage direct current inspection robot." International Journal of Advanced Robotic Systems 17, no. 3 (2020): 172988142093093. http://dx.doi.org/10.1177/1729881420930933.
Full textKOSENKOV, Volodymyr, Dmytro IVLIEV, Oleksandr VYNAKOV, Elvira SAVOLOVA, and Viktoria YARMOLOVYCH. "USE OF T-SHAPED TOOTH IN A DIRECT CURRENT MACHINE WITH A WINDLESS ROTOR." Herald of Khmelnytskyi National University. Technical sciences 311, no. 4 (2022): 110–14. http://dx.doi.org/10.31891/2307-5732-2022-311-4-110-114.
Full textPrimdahl, F., and G. Marklund. "Birkeland currents correlated with direct-current electric fields observed during the CENTAUR Black Brant X rocket experiment." Canadian Journal of Physics 64, no. 10 (1986): 1412–16. http://dx.doi.org/10.1139/p86-250.
Full textBogod, Yu A., Vit B. Krasovitskii, and E. T. Lemeshevskaya. "Direct-current skinning in inhomogeneous bismuth single crystals." Soviet Journal of Low Temperature Physics 11, no. 2 (1985): 84–86. https://doi.org/10.1063/10.0031247.
Full textYamazaki, Keita, Kazuo Kato, Koichiro Kobayashi, et al. "Environmental low-frequency magnetic field due to direct-current electric railcar." IEEJ Transactions on Fundamentals and Materials 120, no. 8-9 (2000): 835–44. http://dx.doi.org/10.1541/ieejfms1990.120.8-9_835.
Full textOnuke, Takashi, Yuichi Murai, Keiichi Satoh, and Masaaki Takahashi. "Magnetic field analysis of direct current machine including exterior leakage flux." IEEJ Transactions on Power and Energy 105, no. 5 (1985): 435–42. http://dx.doi.org/10.1541/ieejpes1972.105.435.
Full textTİRYAKİ, Hasan, Alper Sefa ÇAĞIŞLAR, Abdurrahim AKGÜNDOĞDU, and İlhan KOCAARSLAN. "Commutable Magnetic Field on Brushless Direct Current Motor for Electrical Vehicle." Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi 8, no. 2 (2016): 37–45. http://dx.doi.org/10.29137/umagd.346153.
Full textYamazaki, Keita, Kazuo Kato, Koichiro Kobayashi, et al. "Environmental low-frequency magnetic field due to direct-current electric railcars." Electrical Engineering in Japan 137, no. 3 (2001): 10–21. http://dx.doi.org/10.1002/eej.1090.
Full textDmitriev, V. M., O. R. Prikhod’ko, E. V. Khristenko, A. V. Bondarenko, and M. A. Obolenskii. "Direct measurements of the critical current density in YBa2Cu3O7–x single crystals." Soviet Journal of Low Temperature Physics 16, no. 11 (1990): 839–40. https://doi.org/10.1063/10.0032741.
Full textLi, Ying Hong, Bo Song, and Ning Wang. "Study on the Solidified Microstructures of AZ61 Magnesium Alloys under Electromagnetic Fields." Applied Mechanics and Materials 331 (July 2013): 421–26. http://dx.doi.org/10.4028/www.scientific.net/amm.331.421.
Full textBai, Yang, Ji Zhou, Zhenxing Yue, Zhilun Gui, and Longtu Li. "Magnetic properties of composite Y-type hexagonal ferrites in a direct current magnetic field." Journal of Applied Physics 98, no. 6 (2005): 063901. http://dx.doi.org/10.1063/1.2035878.
Full textFang, Hong Wei, Si Yuan Fang, Jia Jia Cheng, and Jing Lian. "Investigation of Internal Faults for a Direct-Driven PMSG with Maxwell." Advanced Materials Research 760-762 (September 2013): 1364–68. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.1364.
Full textPassath, Helfried, Gerald Leber, Peter Hamberger, and Florian Bachinger. "Direct current compensation – field experience under service conditions." Journal of Energy - Energija 63, no. 1-4 (2022): 3–12. http://dx.doi.org/10.37798/2014631-4158.
Full textTamao, Tsutomu. "Direct contribution of oblique field-aligned currents to ground magnetic fields." Journal of Geophysical Research 91, A1 (1986): 183. http://dx.doi.org/10.1029/ja091ia01p00183.
Full textWang, Wei. "The Simulation of Lane Based on Magnetic Markers Guidance in Laboratory." Advanced Materials Research 823 (October 2013): 370–73. http://dx.doi.org/10.4028/www.scientific.net/amr.823.370.
Full textWang, Huipeng, Jialong Shi, Qiaogen Wang, Lihong Dong, and Huizhong Liu. "Surface Crack Detection of Aluminum Alloy Using Injected Direct Current-Magnetic Field Measurement Method." Sensors 25, no. 6 (2025): 1800. https://doi.org/10.3390/s25061800.
Full textKuznecov, K. B., G. A. Polunin, and A. P. Zakirova. "Development of theory of magnetic field assessment nearby a direct current catenary." Herald of the Ural State University of Railway Transport, no. 2 (2019): 94–99. http://dx.doi.org/10.20291/2079-0392-2019-2-94-99.
Full textDouqin, Ma, Song Yahu, Wu Qingjie, and Xie Jingpei. "The antiwear mechanism of W-20Cu composites in direct current magnetic field." Materials Research Express 5, no. 12 (2018): 126513. http://dx.doi.org/10.1088/2053-1591/aae171.
Full textMatlachov, Andrei N., Petr L. Volegov, Vadim S. Zotev, Michelle A. Espy, John C. Mosher, and Robert H. Kraus. "Using ultra-low field nuclear magnetic resonance for direct neural current measurements." International Congress Series 1300 (June 2007): 582–85. http://dx.doi.org/10.1016/j.ics.2007.01.022.
Full textZhang, Yan Li, Ning Zhang, Ya Hua Kang, Xiu Ke Yan, and De Xin Xie. "Magnetic Field Analysis of a Complex Construction Transformer Using Direct Field-Circuit Coupling Method." Advanced Materials Research 614-615 (December 2012): 1230–33. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.1230.
Full textGillon, Pascale. "Materials processing with high direct-current magnetic fields." JOM 47, no. 5 (1995): 34–37. http://dx.doi.org/10.1007/bf03221173.
Full textEyni, Zahra, and Hakimeh Mohammadpour. "A spin current rectifier." International Journal of Modern Physics B 31, no. 30 (2017): 1750230. http://dx.doi.org/10.1142/s0217979217502307.
Full textKarpets, M., M. Rajnak, O. Ivankov, et al. "Small-Angle Neutron Scattering Study of Transformer Oil-Based Ferrofluids." Ukrainian Journal of Physics 65, no. 8 (2020): 729. http://dx.doi.org/10.15407/ujpe65.8.729.
Full textDobriyan, R., S. Vitolina, L. Lavrinovicha, and J. Dirba. "Theoretical and Experimental Research of Synchronous Reluctance Motor." Latvian Journal of Physics and Technical Sciences 54, no. 5 (2017): 38–47. http://dx.doi.org/10.1515/lpts-2017-0032.
Full textMoffett, Mark B., David L. Chesny, Jake M. Cole, Kaleb W. Hatfield, and Razvan Rusovici. "Bdot probe and Rogowski coil cross-calibration and sensor fusion in pulsed direct current capacitor discharges." Review of Scientific Instruments 93, no. 3 (2022): 034707. http://dx.doi.org/10.1063/5.0076741.
Full textPlakhtiev, A. M., G. A. Gaziev, N. A. Akbarova, and A. S. Rajapov. "Continuous current converters in the electrosphere." EPJ Web of Conferences 321 (2025): 01015. https://doi.org/10.1051/epjconf/202532101015.
Full textKaziev, A. V., D. G. Ageychenkov, A. V. Tumarkin, et al. "Ion current optimization in a magnetron with tunable magnetic field configuration." Journal of Physics: Conference Series 2064, no. 1 (2021): 012061. http://dx.doi.org/10.1088/1742-6596/2064/1/012061.
Full textTrivedi, K., S. Tanguay, M. Matties, and R. Sacks. "Magnetically Tailored Arc and Glow Discharge Plasmas for Atomic Spectroscopy." Applied Spectroscopy 41, no. 5 (1987): 833–43. http://dx.doi.org/10.1366/0003702874448382.
Full textDas, Umesh C. "Apparent resistivity curves in controlled‐source electromagnetic sounding directly reflecting true resistivities in a layered earth." GEOPHYSICS 60, no. 1 (1995): 53–60. http://dx.doi.org/10.1190/1.1443762.
Full textVogt, G., A. Schrefl, R. Mitteregger, and D. Falkenhagen. "A Novel Field Generator for Magnetic Stimulation in Cell Culture Experiments." International Journal of Artificial Organs 20, no. 6 (1997): 352–56. http://dx.doi.org/10.1177/039139889702000609.
Full textWu, Wei, Jikai Si, Haichao Feng, Zhiping Cheng, Yihua Hu, and Chun Gan. "Rotor Eddy Current Loss Calculation of a 2DoF Direct-Drive Induction Motor." Energies 12, no. 6 (2019): 1134. http://dx.doi.org/10.3390/en12061134.
Full textXu, Guangye, and Kazuhiko Iwai. "Micro-Scale Flow Excitation under Imposition of Uniform Magnetic Field and Electrical Current." Metals 12, no. 12 (2022): 2034. http://dx.doi.org/10.3390/met12122034.
Full textGiordano, James, Marom Bikson, Emily S. Kappenman, et al. "Mechanisms and Effects of Transcranial Direct Current Stimulation." Dose-Response 15, no. 1 (2017): 155932581668546. http://dx.doi.org/10.1177/1559325816685467.
Full textBrauchle, Felix, Florian Grimsmann, Otto von Kessel, and Kai Peter Birke. "Direct measurement of current distribution in lithium-ion cells by magnetic field imaging." Journal of Power Sources 507 (September 2021): 230292. http://dx.doi.org/10.1016/j.jpowsour.2021.230292.
Full textZhang, H. S., and K. Komvopoulos. "Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization." Review of Scientific Instruments 79, no. 7 (2008): 073905. http://dx.doi.org/10.1063/1.2949128.
Full textSun, J.-B., T.-M. Wang, Y.-S. Yu, et al. "Numerical simulation and fabrication for bimetal clad slab under direct current magnetic field." International Journal of Cast Metals Research 24, no. 3-4 (2011): 190–96. http://dx.doi.org/10.1179/136404611x13001912814068.
Full textHahn, Seungyong, Kwanglok Kim, Kwangmin Kim, et al. "45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet." Nature 570, no. 7762 (2019): 496–99. http://dx.doi.org/10.1038/s41586-019-1293-1.
Full textLevko, Dmitry, and Laxminarayan L. Raja. "Magnetized direct current microdischarge. II. Effect of magnetic field amplitude on the plasma." Journal of Applied Physics 121, no. 9 (2017): 093303. http://dx.doi.org/10.1063/1.4977755.
Full textTANAKA, Hiroyuki, and Haruhiko KOHNO. "102 Numerical analysis of a rising bubble under a direct-current magnetic field." Proceedings of Conference of Kyushu Branch 2015.68 (2015): 3–4. http://dx.doi.org/10.1299/jsmekyushu.2015.68.3.
Full textProzorov, E. F., K. N. Ul’yanov, V. A. Fedorov, and Ya I. Londer. "Study of the direct current breakage process in an external nonuniform magnetic field." High Temperature 49, no. 5 (2011): 629–36. http://dx.doi.org/10.1134/s0018151x1105018x.
Full textCHEN, Hang, Jin-chuan JIE, Ying FU, Hong-jun MA, and Ting-ju LI. "Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation." Transactions of Nonferrous Metals Society of China 24, no. 5 (2014): 1295–300. http://dx.doi.org/10.1016/s1003-6326(14)63191-5.
Full textDzhala, R. M., L. P. Dikmarova, and V. Yu Kornienko. "Effect of the terrestrial magnetic field on direct-current measurements in underground pipelines." Measurement Techniques 38, no. 7 (1995): 786–90. http://dx.doi.org/10.1007/bf02616265.
Full textTan Xi, 谭曦, 刘军 Liu Jun, 殷建玲 Yin Jianling, and 余伟涛 Yu Weitao. "Magnetic Sensitivity Studies of Fiber Optic Gyroscope in Direct Current and Alternating Current Magnetic Fields." Chinese Journal of Lasers 39, no. 9 (2012): 0905006. http://dx.doi.org/10.3788/cjl201239.0905006.
Full text