Dissertations / Theses on the topic 'Direct methanol fuel cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Direct methanol fuel cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Joseph, Krishna Sathyamurthy. "Hybrid direct methanol fuel cells." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44777.
Full textSultan, Jassim. "Direct methanol fuel cells /." Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,162066.
Full textHacquard, Alexandre. "Improving and Understanding Direct Methanol Fuel Cell (DMFC) Performance." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-050505-151501/.
Full textKim, Hyea. "High energy density direct methanol fuel cells." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37106.
Full textYu, Eileen Hao. "Development of direct methanol alkaline fuel cells." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289171.
Full textYe, Qiang. "Spontaneous hydrogen evolution in direct methanol fuel cells /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MECH%202005%20YEQ.
Full textXu, Chao. "Transport phenomena of methanol and water in liquid feed direct methanol fuel cells /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20XU.
Full textTroughton, Gavin L. "Anodes for the direct methanol fuel cell." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335195.
Full textWu, Pin-Han. "Pre-stretched Recast Nafion for Direct Methanol Fuel Cells." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1212685669.
Full textZhang, Haifeng. "Reduction of methanol crossover in direct methanol fuel cells by an integrated anode structure and composite electrolyte membrane /." View abstract or full-text, 2010. http://library.ust.hk/cgi/db/thesis.pl?CBME%202010%20ZHANG.
Full textSprague, Isaac Benjamin. "Characterization of a microfluidic based direct-methanol fuel cell." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Summer2008/I_Sprague_072208.pdf.
Full textChan, Yeuk Him. "A self-regulated passive fuel-feed system for passive direct methanol fuel cells /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20CHAN.
Full textGarnica, Rodríguez Jairo Ivan. "Polyaniline-silica-nafion composite membranes for direct methanol fuel cells /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18986.pdf.
Full textWong, Chung Wai. "Experimental investigations of the anode flow fields of micro direct methanol fuel cells /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MECH%202005%20WONG.
Full textLiang, Zhenxing. "Preparation of high-durability membrane and electrode assemblies for direct methanol fuel cells /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20LIANG.
Full textDeLuca, Nicholas William Elabd Yossef A. "Nafion® blend membranes for the direct methanol fuel cell /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2710.
Full textKnox, Daniel. "Performance Characteristics of PBI-based High Temperature Direct Methanol Fuel Cells." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/956.
Full textArgyropoulos, Panagiotis. "Performance and modelling of the direct methanol fuel cell (DMFC)." Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247913.
Full textSchrauth, Anthony J. "Design of high-ionic conductivity electrodes for direct methanol fuel cells." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67596.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 175-178).
Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), however, much of the catalyst included in the anode is significantly under-utilized, while a small fraction of the catalyst facilitates the bulk of the oxidation reaction. In this thesis, the porous carbon electrode used as the anode in a DMFC is analyzed using Axiomatic Design theory. The imbalance of catalyst utilization in these electrodes is determined to be a result of coupled design, in which large amounts of catalyst can compromise ionic resistance and fuel transport within the electrode. This design flaw is confirmed experimentally using cyclic voltammetry and impedance spectroscopy. Tests of standard electrodes show that they have a maximum Nafion content of about 30% Nafion by weight and that excessive catalyst loading eventually results in less available catalyst, not more. An alternative design is proposed to alleviate the coupling between functions by applying micron-scale structure to the nano-porous electrode. The proposed design introduces ionically conductive channels through the thickness of the porous electrode to greatly reduce ionic resistance to catalyst particles far from the ion exchange membrane without compromising access to catalyst particles near the membrane accessible for fuel delivery and product removal. The influence of the proposed design on ionic conductivity is analyzed using a twodimensional analog of the transmission line model for porous electrodes. The model suggests that ionic resistance can be decreased by up to 87 % with the addition of ionically conductive posts. Structured electrodes with 75 pm diameter posts spaced 175 tm apart are shown in electrochemical impedance spectroscopy experiments to perform notably better than standard cells. The structured cells show a 6 % increase in available catalyst area and a 46 % decrease in ionic resistance. Peak cell power is estimated to increase by 4 % as a result of the best electrode tested while an electrode with ideal geometry could increase peak cell power by 9 %. Even greater benefits could be realized if, as predicted, structured cells can keep ionic resistance constant while catalyst loading is increased.
by Anthony J. Schrauth.
Ph.D.
Felipe, Alfonso Martínez. "Preparation and characterisation of new materials for electrolytes used in Direct Methanol Fuel Cells." Available from the University of Aberdeen Library and Historic Collections Digital Resources. Restricted: contains 3rd party material and therfore cannot be made available electronically, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=59378.
Full textDawson, Craig. "Materials for direct methanol fuel cells: inhibition of methanol crossover using novel membrane electrode assemblies." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/materials-for-direct-methanol-fuel-cells-inhibition-of-methanol-crossover-using-novel-membrane-electrode-assemblies(843284c4-3620-4cac-9118-06671d7bb420).html.
Full textChen, Rong. "Coupled electrochemical and heat/mass transport characteristics in passive direct methanol fuel cells /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?MECH%202007%20CHEN.
Full textNordlund, Joakim. "The Anode in the Direct Methanol Fuel Cell." Doctoral thesis, KTH, Chemical Engineering and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3676.
Full textThe direct methanol fuel cell (DMFC) is a very promisingpower source for low power applications. High power and energydensity, low emissions, operation at or near ambientconditions, fast and convenient refuelling and a potentiallyrenewable fuel source are some of the features that makes thefuel cell very promising. However, there are a few problemsthat have to be overcome if we are to see DMFCs in our everydaylife. One of the drawbacks is the low performance of the DMFCanode. In order to make a better anode, knowledge about whatlimits the performance is of vital importance. With theknowledge about the limitations of the anode, the flow field,gas diffusion layer and the morphology of the electrode can bemodified for optimum performance.
The aim of this thesis is to elucidate the limiting factorsof the DMFC anode. A secondary goal is to create a model of theperformance, which also has a low computational cost so that itcan be used as a sub model in more complex system models. Toreach the primary goal, to elucidate the limiting factors, amodel has to be set up that describes the most importantphysical principles occurring in the anode.
In addition, experiments have to be performed to validatethe model. To reach the secondary goal, the model has to bereduced to a minimum. A visual DMFC has been developed alongwith a methodology to extract two-phase data. This has provento be a very important part of the understanding of thelimiting factors. Models have been developed from a detailedmodel of the active layer to a two-phase model including theentire three-dimensional anode.
The results in the thesis show that the microstructure inthe active layer does not limit the performance. Thelimitations are rather caused by the slow oxidation kineticsand, at concentrations lower than 2 M of methanol, the masstransport resistance to and inside the active layer. Theresults also show that the mass transfer of methanol to theactive layer is improved if gas phase is present, especiallyfor higher temperatures since the gas phase then contains moremethanol.
It is concluded that the mass transport resistance lower theperformance of a porous DMFC anode at the methanolconcentrations used today. It is also concluded that masstransfer may be improved by making sure that there is gas phasepresent, which can be done by choosing flow distributor and gasdiffusion layer well.
Keywords: direct methanol fuel cell, fuel cell, DMFC, anode,model
Hogarth, Martin P. "The development of the direct methanol fuel cell." Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295055.
Full textAllen, Ruth Gleave. "New anodes for the direct methanol fuel cell." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413008.
Full textDickinson, Angus John. "Development of a direct methanol fuel cell system." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324802.
Full textLee, Jeong Kyu. "Direct Methanol Fuel Cell Membranes from Polymer Blends." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1134316195.
Full textZhang, Xiao. "Preparation and characterization of proton exchange membranes for direct methanol fuel cells." Doctoral thesis, Universitat Rovira i Virgili, 2005. http://hdl.handle.net/10803/8525.
Full textThe main goal of the thesis is to prepare novel proton exchange membranes to apply in the DMFC. PEG and PA membranes compuestas fueron preparadas. Derivados del ácido fosfórico y lignosulfonados (LS) fueron incluidos en la estructura de la PA para actuar como agentes transportadores de protones. El mecanismo de la conductividad de protón es "hopping". Ellos mostraron el más baja del transporte de metanol.
Se obtuvieron también membranas híbridas de LS, preparadas mediante la mezcla de los dos polímeros, LS y PSU, siguiendo el método de precipitación en inmersión. Las propiedades electroquímicas de las membranas de LS fueron caracterizadas. Las membranas de LS alcanzaron conductividades de protón aceptables (10-20 mS/cm) con capacidad de intercambio iónico muy baja (IEC) (60 veces más baja que Nafion). "Membrane electrode assemblies" (MEAs) fueron preparadas y sus rendimientos de celda fueron medidos en una celda individual directa de metanol (DMFC).
LS membrana is the highlight point of this thesis. It demonstrated the first that LS is a good proton exchange material although it is a waste from the paper industry. It also proved that porous membrane can be used in the DMFC with acceptable proton conductivity and low methanol permeability, which is a totally new way from the existing literatures.
The results have been published on international journals and have been presented on international conferences:
1. X. Zhang, A. Glüsen, R. Garcia-Valls, Porous Lignosulfonate membrane for direct methanol fuel cells, accepted by Journal of Membrane Science, 2005
2. X. Zhang, J. Benavente, R. Garcia Valls, Lignin-based Membranes for Electrolyte Transference, Journal of Power Sources, 145 (2005) 292
3. X. Zhang, L. Pitol Filho, C. Torras, R. Garcia Valls, Experimental and Computational Study of Proton and Methanol Permeability through Composite Membranes, Journal of Power Sources, 145 (2005) 223
4. J. Benavente, X. Zhang, R. Garcia Valls, Modification of Polysulfone Membranes with Polyethylene Glycol and Lignosulfate: Electrical Characterization by Impedance Spectroscopy Measurements, Journal of Colloid and Interface Science, 285 (2005) 273-280
5. X. Zhang, R. Garcia-Valls, Proton transport membrane containing lignin compound for direct methanol fuel cells (Poster), 5th Ibero American Congress on Membrane Science and Technology, 2005, Valencia- Spain
6. X. Zhang, J. Benavente and R. Garcia-Valls, Lignin-based membranes for electrolyte transference (Oral presentation), Fuel Cell Science & Technology, Oct. 2004, Munich- Germany.
7. X. Zhang, R. Garcia-Valls, New membranes for Proton Transport in DMFC (Poster), Euromembrane Sep. 2004, ISBN: 3-930400-65-0, p. 64, Hamburg- Germany,
8. X. Zhang, R. Garcia-Valls, Lignosulfonate Application in Proton Transport Membrane (Oral presentation), 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, May. 2004, Rome- Italy
9. X. Zhang, R. Garcia-Valls, Proton Selective Composite Membrane for Direct Methanol Fuel Cell (Oral presentation), 5th NYM (Network Young Membrains) Oct. 2003, ISBN: 84-688-3132-8, p. 199, Barcelona, Spain
10. X. Zhang, R. Garcia-Valls, A. Jiménez-López, E. Rodríguez-Castellón and J. Benavente, Electrical and Chemical Surface Characterization of Lignosulfate/Polysulfone Membranes for Fuel Cells Application, International Conference on "New Proton Conducting Membranes and Electrodes for PEM FCs", Oct. 2005, Assisi, Italy.
Debido a la crisis de petróleo y a los problemas de emisión, las pilas de combustible adquieren un lugar importante en la aplicación de la energía alternativa. Son una clase de dispositivo electroquímico que convierte la energía química directamente en energía eléctrica. Las celdas de combustible de metanol (DMFC) usan membranas de polímero como el electrolito; las membranas de polímero son capaces de transportar protones de hidrógeno. El sistema de la celda de combustible todavía es costoso y las membranas de intercambio de protón han contribuido significativamente para el costo elevado.
Actualmente, las membranas de ácido perfluorosulfonico (PFSA) (por ejemplo, Nafion ®, de DuPont) ten sido investigadas extensamente. Sin embargo mostraron alto paso de metanol e alto "swelling" lo que lleva a una eficiencia de celda baja.
El objetivo principal de la tesis es preparar membranas de intercambio de protón nuevas para la aplicación en DMFC. Membranas compuestas de PEG y de PA fueron preparadas. Derivados del ácido fosfórico y lignosulfonados (LS) fueron incluidos en la estructura de la PA para actuar como agentes transportadores de protones. El mecanismo de conductividad de protón es "hopping". Ellos mostraron el transporte de metanol más bajo.
Se obtuvieron también membranas híbridas de LS, preparadas mediante la mezcla de los dos polímeros, LS y PSU, siguiendo el método de precipitación en inmersión. Las propiedades electroquímicas de las membranas de LS fueron determinadas. Las membranas de LS alcanzaron conductividades de protón aceptables (10-20 mS/cm) con capacidad de intercambio iónico muy baja (IEC) (60 veces más baja que Nafion). "Membrane electrode assemblies" (MEAs) fueron preparadas y sus rendimientos de celda fueron medidos en una celda individual directa de metanol (DMFC).
Las membranas de LS son el punto principal de esta tesis. Primero se demostró que LS es un material de intercambio de protón muy bueno aunque sea un residuo de la industria de papel. También se probó que membranas porosas pueden ser usadas en DMFC con una conductancia de protón aceptable y baja permeabilidad de metanol, lo que es una manera totalmente nueva comparada a la literatura existente.
Los resultados han sido divulgados en revistas internacionales y han sido presentados en conferencias internacionales:
1. X. Zhang, A. Glüsen, R. Garcia-Valls, Porous Lignosulfonate membrane for direct methanol fuel cells, accepted by Journal of Membrane Science, 2005
2. X. Zhang, J. Benavente, R. Garcia Valls, Lignin-based Membranes for Electrolyte Transference, Journal of Power Sources, 145 (2005) 292
3. X. Zhang, L. Pitol Filho, C. Torras, R. Garcia Valls, Experimental and Computational Study of Proton and Methanol Permeability through Composite Membranes, Journal of Power Sources, 145 (2005) 223
4. J. Benavente, X. Zhang, R. Garcia Valls, Modification of Polysulfone Membranes with Polyethylene Glycol and Lignosulfate: Electrical Characterization by Impedance Spectroscopy Measurements, Journal of Colloid and Interface Science, 285 (2005) 273-280
5. X. Zhang, R. Garcia-Valls, Proton transport membrane containing lignin compound for direct methanol fuel cells (Poster), 5th Ibero American Congress on Membrane Science and Technology, 2005, Valencia- Spain
6. X. Zhang, J. Benavente and R. Garcia-Valls, Lignin-based membranes for electrolyte transference (Oral presentation), Fuel Cell Science & Technology, Oct. 2004, Munich- Germany.
7. X. Zhang, R. Garcia-Valls, New membranes for Proton Transport in DMFC (Poster), Euromembrane Sep. 2004, ISBN: 3-930400-65-0, p. 64, Hamburg- Germany,
8. X. Zhang, R. Garcia-Valls, Lignosulfonate Application in Proton Transport Membrane (Oral presentation), 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, May. 2004, Rome- Italy
9. X. Zhang, R. Garcia-Valls, Proton Selective Composite Membrane for Direct Methanol Fuel Cell (Oral presentation), 5th NYM (Network Young Membrains) Oct. 2003, ISBN: 84-688-3132-8, p. 199, Barcelona, Spain
10. X. Zhang, R. Garcia-Valls, A. Jiménez-López, E. Rodríguez-Castellón and J. Benavente, Electrical and Chemical Surface Characterization of Lignosulfate/Polysulfone Membranes for Fuel Cells Application, International Conference on "New Proton Conducting Membranes and Electrodes for PEM FCs", Oct. 2005, Assisi, Italy La tesis tuvo la cooperación del Forschungszentrum Jülich, Alemania y la doctoranda esta solicitando el titulo de Doctorado Europeo.
Mollá, Romano Sergio. "Application of Nanofibres in Polymer Composite Membranes for Direct Methanol Fuel Cells." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/58611.
Full text[ES] Las pilas de combustible de metanol directo son dispositivos factibles para la generación electroquímica eficiente de energía eléctrica si se pueden solucionar algunas cuestiones relacionadas tanto con los electrodos como las membranas. La investigación llevada a cabo en esta tesis doctoral se ha centrado particularmente en los problemas asociados con las membranas. Nafion es el material de membrana más común para pilas de combustible debido a su alta conductividad protónica y excepcional estabilidad química y mecánica. Sin embargo, padece una considerablemente alta permeabilidad al metanol y una limitada temperatura de operación (< 80 ºC). El primer aspecto se abordó con el uso de nanofibras de PVA y el segundo reemplazando Nafion con polímeros basados en SPEEK. Membranas compuestas de Nafion con nanofibras de PVA, funcionalizadas en su superficie con grupos ácidos sulfónicos, exhibieron menores permeabilidades al metanol debido a la propiedad barrera intrínseca del PVA, aunque la conductividad protónica también se vio afectada como resultado del comportamiento global no conductor de la fase de PVA. Remarcablemente, las nanofibras proporcionaron un refuerzo mecánico fuerte que permitió la preparación de membranas de bajo espesor (< 20 micrómetros) con unas pérdidas óhmicas reducidas, así contrarrestando sus menores conductividades protónicas. Se examinaron membranas basadas en SPEEK para la operación de pilas de combustible de metanol directo dentro del rango intermedio de temperaturas entre 80-140 ºC, en el que las lentas reacciones electroquímicas en los electrodos se aceleran y la conductividad protónica se activa. El SPEEK se combinó y entrecruzó con los polímeros de PVA y PVB para evitar su disolución en condiciones de agua caliente. Las composiciones de SPEEK-PVA mostraron conductividades protónicas funcionales y las mezclas de SPEEK-PVB presentaron permeabilidades al metanol muy bajas. Se prepararon y caracterizaron membranas nanocompuestas constituidas por nanofibras de SPEEK-30%PVB embebidas en una matriz de SPEEK-35%PVA. Una membrana nanocompuesta entrecruzada a 120 ºC reveló resultados prometedores para pilas de combustible de metanol directo operando a temperaturas intermedias. Se puede concluir que la electrohilatura es una técnica apropiada para la obtención de mallas de nanofibras poliméricas destinadas a membranas compuestas avanzadas con características y rendimientos en pilas de combustible mejorados.
[CAT] Les piles de combustible de metanol directe són dispositius factibles per a la generació electroquímica eficient d'energia elèctrica si es poden solucionar algunes qüestions relacionades tant amb els elèctrodes com les membranes. La investigació duta a terme en esta tesi doctoral s'ha centrat particularment en els problemes associats amb les membranes. Nafion és el material de membrana més comú per a piles de combustible a causa de la seua alta conductivitat protònica i excepcional estabilitat química i mecànica. No obstant això, patix una considerablement alta permeabilitat al metanol i una limitada temperatura d'operació (< 80 ºC). El primer aspecte es va abordar amb l'ús de nanofibres de PVA i el segon reemplaçant Nafion amb polímers basats en SPEEK. Membranes compostes de Nafion amb nanofibres de PVA, funcionalizades en la seua superfície amb grups àcids sulfónics, van exhibir menors permeabilitats al metanol a causa de la propietat barrera intrínseca del PVA, encara que la conductivitat protònica també es va veure afectada com resultat del comportament global no conductor de la fase de PVA. Remarcablement, les nanofibres van proporcionar un reforç mecànic fort que va permetre la preparació de membranes de baixa grossària (< 20 micròmetres) amb unes pèrdues òhmiques reduïdes, així contrarestant les seues menors conductivitats protòniques. Es van examinar membranes basades en SPEEK per a l'operació de piles de combustible de metanol directe dins del rang intermedi de temperatures entre 80-140 ºC, en el que les lentes reaccions electroquímiques en els elèctrodes s'acceleren i la conductivitat protònica s'activa. El SPEEK es va combinar i va entrecreuar amb els polímers de PVA i PVB per a evitar la seua dissolució en condicions d'aigua calenta. Les composicions de SPEEK-PVA van mostrar conductivitats protòniques funcionals i les mescles de SPEEK-PVB van presentar permeabilitats al metanol molt baixes. Es van preparar i caracteritzar membranes nanocompostes constituïdes per nanofibres de SPEEK-30%PVB embegudes en una matriu de SPEEK-35%PVA. Una membrana nanocomposta entrecreuada a 120 ºC va revelar resultats prometedors per a piles de combustible de metanol directe operand a temperatures intermèdies. Es pot concloure que l'electrofilatura és una tècnica apropiada per a l'obtenció de malles de nanofibres polimériques destinades a membranes compostes avançades amb característiques i rendiments en piles de combustible millorats.
Mollá Romano, S. (2015). Application of Nanofibres in Polymer Composite Membranes for Direct Methanol Fuel Cells [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58611
TESIS
Premiado
Naidoo, Sivapregasen. "Synthesis of multi-metallic catalysts for fuel cell applications." Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6275_1241512064.
Full textThe direct methanol fuel cell or DMFC is emerging as a promising alternative energy source for many applications. Developed and developing countries, through research, are fast seeking a cheap and stable supply of energy for an ever-increasing number of energy-consuming portable devices. The research focus is to have DMFCs meeet this need at an affordable cost is problematic. There are means and ways of making this a reality as the DMFC is found to be complementary to secondary batteries when used as a trickle charger, full charger, or in some other hybrid fuel cell combination. The core functioning component is a catalyst containing MEA, where when pure platinum is used, carbon monoxide is the thermodynamic sink and poisons by preventing further reactions at catalytic sites decreasing the life span of the catalyst if the CO is not removed. Research has shown that the bi-functional mechanism of a platinum-ruthenium catalyst is best because methanol dehydrogenates best on platinumand water dehydrogenation is best facilitated on ruthenium. It is also evident that the addition of other metals to that of PtRu/C can make the catalyst more effective and effective and increase the life span even further. In addition to this, my research has attempted to reduce catalyst cost for DMFCs by developing a low-cost manufacturing technique for catalysts, identify potential non-noblel, less expensive metallic systems to form binary, ternary and quarternary catalysts.
Prakash, Shruti. "The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28279.
Full textCommittee Chair: Kohl, Paul; Committee Member: Fuller, Tom; Committee Member: Gray, Gary; Committee Member: Liu, Meilin; Committee Member: Meredith, Carson; Committee Member: Rincon-Mora, Gabriel.
Mohamed, Rushanah. "Synthesis and characterisation of proton conducting membranes for direct methanol fuel cell (DMFC) applications." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6787_1194349066.
Full textFor a direct methanol fuel cell (DMFC), the proton exchange membrane must conduct protons and be a good methanol barrier. In addition to the high methanol permeability achieved by these membranes, they are very expensive and contribute greatly to theoverall cost of fuel cell set up. The high cost of the DMFC components is one of the main issues preventing its commercialization. The main objective of this study was thus to produce highly proton conductive membranes that are cheap to manufacture and have low methanol permeability.
Yang, Weiwei. "Mathematical modeling of two-phase mass transport in liquid-feed direct methanol fuel cells /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20YANG.
Full textLi, Xiao. "Development of composite membranes for direct methanol fuel cell." Thesis, University of Manchester, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556263.
Full textÖzdinçer, Baki. "Novel support materials for direct methanol fuel cell catalysts." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/novel-support-materials-for-direct-methanol-fuel-cell-catalysts(f7dfe29a-a593-44a6-a9e3-e9e8f5b8b2a2).html.
Full textBirgersson, Erik. "Mathematical Modeling of Transport Phenomena in Polymer Electrolyte and Direct Methanol Fuel Cells." Doctoral thesis, KTH, Mechanics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3692.
Full textThis thesis deals with modeling of two types of fuel cells:the polymer electrolyte fuel cell (PEFC) and the directmethanol fuel cell (DMFC), for which we address four majorissues: a) mass transport limitations; b) water management(PEFC); c) gas management (DMFC); d) thermal management.
Four models have been derived and studied for the PEFC,focusing on the cathode. The first exploits the slenderness ofthe cathode for a two-dimensional geometry, leading to areduced model, where several nondimensional parameters capturethe behavior of the cathode. The model was extended to threedimensions, where four di.erent flow distributors were studiedfor the cathode. A quantitative comparison shows that theinterdigitated channels can sustain the highest currentdensities. These two models, comprising isothermal gasphaseflow, limit the studies to (a). Returning to a two-dimensionalgeometry of the PEFC, the liquid phase was introduced via aseparate flow model approach for the cathode. In addition toconservation of mass, momentum and species, the model wasextended to consider simultaneous charge and heat transfer forthe whole cell. Di.erent thermal, flow fields, and hydrodynamicconditions were studied, addressing (a), (b) and (d). A scaleanalysis allowed for predictions of the cell performance priorto any computations. Good agreement between experiments with asegmented cell and the model was obtained.
A liquid-phase model, comprising conservation of mass,momentum and species, was derived and analyzed for the anode ofthe DMFC. The impact of hydrodynamic, electrochemical andgeometrical features on the fuel cell performance were studied,mainly focusing on (a). The slenderness of the anode allows theuse of a narrow-gap approximation, leading to a reduced model,with benefits such as reduced computational cost andunderstanding of the physical trends prior to any numericalcomputations. Adding the gas-phase via a multiphase mixtureapproach, the gas management (c) could also be studied.Experiments with a cell, equipped with a transparent end plate,allowed for visualization of the flow in the anode, as well asvalidation of the two-phase model. Good agreement betweenexperiments and the model was achieved.
Keywords:Fuel cell; DMFC; PEFC; one-phase; two-phase;model; visual cell; segmented cell; scale analysis; asymptoticanalysis.
Celik, Caglar. "Carbon Supported And Surfactant Stabilized Metal Nanoparticle Catalysts For Direct Methanol Fuel Cells." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606368/index.pdf.
Full textelik, Ç
aglar M.S., Department of Chemistry Supervisor: Assoc. Prof. Dr. Gü
lsü
n Gö
kagaç
August 2005, 72 pages Carbon supported surfactant, such as 1-decanethiol and octadecanethiol, stabilized platinum and platinum/ruthenium species have been prepared recently. In this thesis, for the first time, 1-hexanethiol has been used as an organic stabilizer for the preparation of carbon supported platinum and platinum/ruthenium nanoparticle catalysts. These new catalysts were employed for methanol oxidation reaction, which were used for direct methanol fuel cells. Cyclic voltammetry, X-ray photoelectron spectroscopy and transmission electron microscopy have been used in order to determine the nature of the catalysts. The effect of temperature and time on catalytic activity of catalysts were examined and the maximum catalytic activity was observed for carbon supported 1-hexanethiol stabilized platinum nanoparticle catalyst (with 1:1 thiol/platinum molar ratio) which was heated up at 200oC for 5 hours. The particle size of platinum nanoparticles was determined to be ~ 10 nm in diameter. The size and distribution of metal nanoparticles on carbon support, the Pt/Ru surface composition, the relative amount of Pt(0), Pt(II) and Pt(IV) and the removal of organic surfactant molecules around the metal nanoparticles were found to be important in determining the catalytic activity of electrodes towards methanol oxidation reaction. A significant decrease in catalytic activity was observed for carbon supported 1-hexanethiol stabilized Pt75Ru25 and Pt97Ru3 (with 1:1 thiol/PtRu molar ratio) with respect to carbon supported 1-hexanethiol stabilized Pt (with 1:1 thiol/platinum molar ratio). This result might be due to unremoved stabilizer shell around platinum/ruthenium nanoparticles and increase in amount of Pt(II) and Pt(IV) compared to Pt(0) where the methanol oxidation occured.
Rosenthal, Neal Stephen. "An Exploration of the Promises and Limitations of Passive Direct Methanol Fuel Cells." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/1011.
Full textJackson, Colleen. "Preparation and characterisation of Pt-Ru/C catalysts for direct methanol fuel cells." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/24322.
Full textPiet, Marvin. "Synthesis and characterization of cathode catalysts for use in direct methanol fuels cells." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_3065_1307691154.
Full textIn this work a modified polyol method was developed to synthesize in-house catalysts. The method was modified for maximum delivery of product and proved to be quick and efficient as well as cost effective. The series of IH catalysts were characterized using techniques such as UV-vis and FT-IR spectroscopy, TEM, XRD, ICP and CV.
Luo, Hongze. "Polymer/nano-organic composite proton exchange membranes for direct methanol fuel cell application." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Full textLuo, Hongze. "Proton conducting polymer composite membrane development for Direct Methanol Fuel Cell applications." Thesis, University of Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1362_1262901908.
Full text
The objective of this study was thus to prepare highly proton condictivity membranes that are cheap to manufacture and have low methanol permeability.  
 
Kothandaraman, R. "Studies On Direct Methanol And Direct Borohydride Fuel Cells." Thesis, 2006. http://hdl.handle.net/2005/415.
Full textSchökel, Alexander. "Ruthenium dissolution in direct methanol fuel cells." Phd thesis, 2015. http://tuprints.ulb.tu-darmstadt.de/4454/1/PhD%20thesis_Alexander%20Sch%C3%B6kel.pdf.
Full textTung, Shih-ping, and 董士平. "Phosphor-silicate Glass for Direct Methanol Fuel Cells." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/eu3xm2.
Full text國立臺灣科技大學
化學工程系
94
In this study, three stages of research are preformed here. In the first part, an accelerated sol-gel process with water/vapor management was developed to synthesize phosphor-silicate glass membranes for shortening the gelation time and enhancing their proton conductivities. The gelation time needed is shortened from 1~6 months in the literature’s report [Materials Letters, 42, 2000, 225] to about 3 days successfully in the developed process. The gelation reactions in the sol-gel process for the synthesis of SiO2-P2O5 glass membranes were investigated by in-situ FTIR spectroscopy. Types of water involving free/hydrogen bonded/strong hydrogen bonded water and hydroxyl group in the synthesized SiO2-P2O5 glass membranes were determined by TGA and in-situ FTIR. A SiO2-P2O5 glass membrane with a methanol permeability of 2.1 x 10-9 cm2/s and high proton conductivity (9.45x10-3 S/cm) was obtained by the developed process. In the second part of this study, a series of inorganic proton conductive membranes based on hydrated phosphor-silicate glass [xP2O5-(100-x)SiO2, x=10, 20, 30, 40 and 50, molar ratio] synthesized by an accelerated sol-gel process with water/vapor management are investigated. The phosphor-silicate glass membranes with high P2O5 content can be synthesized successfully in a short time (~3 days) by the developed process. Due to the formation of the P2O5 and SiO2 network structure, the hydrated phosphor-silicate glass membranes show good thermal stability. Two or three kinds of pore sizes existing in the synthesized glass membranes were observed. Increasing the content of the P2O5 of the glass membrane leads to decrease its major pore size and increase its porosity. However, it was observed that the pore size of the glass membrane becomes larger while its P2O5 content is higher than 40%. The conductivity and the methanol permeability increase with the increasing the content of the P2O5, and interestingly, a maximum selectivity (the ratio of the conductivity to permeability) occurs at the 30P2O570SiO2 glass membrane. The glass membranes shows slightly lower conductivity but much higher selectivity compared with the Nafion 117 membrane. The effect of the P2O5 content on the properties of the glass membrane is also characterized and discussed. At the last part, the characteristics of the Nafion/hydrated phosphor-silicate hybrid membranes for direct methanol fuel cells (DMFCs) were investigated. The effect of the ratio of the hydrated phosphor-silicate to Nafion on the morphology, thermal and chemical stabilities, crystalline structure, proton conductivity, and methanol permeability of the hybrid membrane were studied. The thermal and chemical stability as well as methanol impermeability of the hybrid membrane are relatively better than those of the Nafion 117 membrane. The hybrid membranes show higher proton conductivity than the hydrated phosphor-silicate glass membranes but slightly lower than the Nafion 117 membrane. It was found that the crystalline structure of the hybrid membranes is changed with the content of the SiO2-P2O5 particles. The direct methanol fuel cell composed of the hybrid membrane shows a maximum power density of about 13.42 mW cm-2 at the condition of 20 oC air breathing and 2 M methanol feed solution. The single cell of the hybrid membrane also shows a higher open circuit voltage than that of the Nafion 117 membrane, indicating the methanol crossover of the hybrid membranes is less than compared to that of the Nafion.
Dixon, Ditty. "Spatially resolved studies in direct methanol fuel cells." Phd thesis, 2012. https://tuprints.ulb.tu-darmstadt.de/3025/1/Dixon_ditty_thesis.pdf.
Full textHsu, Chun Ting, and 許鈞婷. "Manufacturing electrodes for direct methanol alkaline fuel cells." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/f4rrp5.
Full textYo, Chia-Min, and 游嘉旻. "Titanium nitride-based electrodes for direct methanol fuel cells." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/32176577955935153532.
Full text國立中興大學
化學工程學系所
103
TiN is a transition metal compound which has inert nature, high electrical conductivity and corrosion resistance. In this study, platinum and palladium nanoparticles were successfully deposited on titanium nitride(TiN)and their electrocatalytic activities for methanol oxidation were investigated. The morphology of TiN was inspected by scanning electron microscope. The study include two parts, in part Ι, Pt nanoparticles supported on TiN were investigated as anode electrocatalytic materials for direct methanol fuel cells. The morphology and composition of the Pt/TiN were characterized by scanning electron microscopy, atomic force microscope, X-ray diffraction, and energy dispersive X-ray spectroscopy. The Pt/TiN showed a sharp hydrogen desorption peak at about -0.2 V vs. Ag/AgCl in a solution of 0.5 M H2SO4. In comparison with Vulcan XC-72-Pt modified glassy carbon electrode(Vulcan XC-72-Pt/GCE), the Pt/TiN exhibited a high value of electrochemically active surface area(ECSA)and an excellent electrocatalytic activity for methanol electrooxidation reaction. The electrocatalytic properties of Pt/TiN for methanol electrooxidation were investigated by cyclic voltammetry in 2 M CH3OH + 1 M H2SO4 solution. The Pt/TiN showed a higher If/Ib value and a better stability than Vulcan XC-72-Pt/GCE. In partⅡ, Pd nanoparticles supported on TiN were investigated as anode electrocatalytic materials for direct methanol fuel cells in alkaline media. The morphology and composition of the Pd/TiN were characterized by scanning electron microscopy, atomic force microscope, X-ray diffraction, and energy dispersive X-ray spectroscopy.Cyclic voltammetry and chronoamperometry tests demonstrated that the Pd/TiN showed higher activity and stability for the methanol oxidation reaction in alkaline media than the Vulcan XC-72-Pd /GCE did.
Hsu, Wei-Lun, and 徐偉倫. "Sensor-less concentration control for direct methanol fuel cells." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/4n9w3u.
Full text國立臺北科技大學
電機工程系研究所
97
In recent years, energy shortage becomes a serious problem. Many kinds of renewable energy are taken into consideration as alternatives. Among many new energy solutions, the hydrogen energy is perhaps the most ideal candidate. As a renewable, its by-product is the water and a little carbon dioxide. Among fuel cells, the direct methanol fuel cell (DMFC) is much emphasized for low power applications for example, 3C-products. The main issue of this thesis focuses on the power source management system and an effective method for maintaining methanol concentration, namely Voltage Double-Check Concentration Control (VDC3), will be proposed. VDC3 can decide the feeding timing of pure methanol to maintain the methanol concentration in a suitable range. The change of output voltage is affected by the loading current. An impermanent overshoot or undershoot phenomenon of output voltage is found when the load changes from low to high or high to low, respectively. The proposed decision maker VDC3 is developed according to these phenomena. Compared to the existed algorithm in the literature designed for constant load, this research proposes a sensor-less control algorithm for varied load. It considers the features of transient response caused by loading change. The proposed algorithm can judge whether the methanol concentration is insufficient and inject pure methanol at correct timing to maintain the methanol concentration in a suitable range.
Liu, Tao-Chun, and 劉陶鈞. "Flexible Mini-Direct Methanol Fuel Cell." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/2h6sgp.
Full text