To see the other types of publications on this topic, follow the link: Direct methanol fuel cells.

Journal articles on the topic 'Direct methanol fuel cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Direct methanol fuel cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Paik, Younkee, Seong-Soo Kim, and Oc Hee Han. "Methanol Behavior in Direct Methanol Fuel Cells." Angewandte Chemie 120, no. 1 (January 2008): 100–102. http://dx.doi.org/10.1002/ange.200703190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paik, Younkee, Seong-Soo Kim, and Oc Hee Han. "Methanol Behavior in Direct Methanol Fuel Cells." Angewandte Chemie International Edition 47, no. 1 (January 2008): 94–96. http://dx.doi.org/10.1002/anie.200703190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Senn, S. M., and D. Poulikakos. "Pyramidal direct methanol fuel cells." International Journal of Heat and Mass Transfer 49, no. 7-8 (April 2006): 1516–28. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.08.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Xiaoming. "Methanol Cross-over in Direct Methanol Fuel Cells." ECS Proceedings Volumes 1995-23, no. 1 (January 1995): 284–98. http://dx.doi.org/10.1149/199523.0284pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qi, Zhigang, Mark Hollett, Chunzhi He, Alan Attia, and Arthur Kaufman. "Operation of Direct Methanol Fuel Cells." Electrochemical and Solid-State Letters 6, no. 2 (2003): A27. http://dx.doi.org/10.1149/1.1531870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hassan, M. A., S. K. Kamarudin, K. S. Loh, and W. R. W. Daud. "Sensors for direct methanol fuel cells." Renewable and Sustainable Energy Reviews 40 (December 2014): 1060–69. http://dx.doi.org/10.1016/j.rser.2014.07.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Neergat, M., D. Leveratto, and U. Stimming. "Catalysts for Direct Methanol Fuel Cells." Fuel Cells 2, no. 2 (December 2002): 60. http://dx.doi.org/10.1002/fuce.200290003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zainoodin, A. M., S. K. Kamarudin, and W. R. W. Daud. "Electrode in direct methanol fuel cells." International Journal of Hydrogen Energy 35, no. 10 (May 2010): 4606–21. http://dx.doi.org/10.1016/j.ijhydene.2010.02.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Neergat, M., D. Leveratto, and U. Stimming. "Catalysts for Direct Methanol Fuel Cells." Fuel Cells 2, no. 1 (August 15, 2002): 25–30. http://dx.doi.org/10.1002/1615-6854(20020815)2:1<25::aid-fuce25>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zakaria, Khalid, Matthew McKay, Ravikumar Thimmappa, Maksudul Hasan, Mohamed Mamlouk, and Keith Scott. "Direct Glycerol Fuel Cells: Comparison with Direct Methanol and Ethanol Fuel Cells." ChemElectroChem 6, no. 9 (May 2, 2019): 2578–85. http://dx.doi.org/10.1002/celc.201900502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Xin, Mahesh Waje, and Yushan Yan. "Methanol Resistant Cathodic Catalyst for Direct Methanol Fuel Cells." Journal of The Electrochemical Society 151, no. 12 (2004): A2183. http://dx.doi.org/10.1149/1.1814453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Calabrese Barton, Scott A., Bryan L. Murach, Thomas F. Fuller, and Alan C. West. "A Methanol Sensor for Portable Direct Methanol Fuel Cells." Journal of The Electrochemical Society 145, no. 11 (November 1, 1998): 3783–88. http://dx.doi.org/10.1149/1.1838873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kim, HaeKyoung. "Passive direct methanol fuel cells fed with methanol vapor." Journal of Power Sources 162, no. 2 (November 2006): 1232–35. http://dx.doi.org/10.1016/j.jpowsour.2006.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhao, Hengbing, Jun Shen, Jiujun Zhang, Haijiang Wang, David P. Wilkinson, and Caikang Elton Gu. "Liquid methanol concentration sensors for direct methanol fuel cells." Journal of Power Sources 159, no. 1 (September 2006): 626–36. http://dx.doi.org/10.1016/j.jpowsour.2005.09.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

NAITO, Katsuyuki. "Direct Methanol Fuel Cells for Mobile Applications." Journal of High Temperature Society 35, no. 5 (2009): 245–49. http://dx.doi.org/10.7791/jhts.35.245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

KAMO, Tomoichi. "Development Trends of Direct Methanol Fuel Cells." Electrochemistry 70, no. 12 (December 5, 2002): 915–19. http://dx.doi.org/10.5796/electrochemistry.70.915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Libby, Brett, W. H. Smyrl, and E. L. Cussler. "Composite Membranes for Direct Methanol Fuel Cells." Electrochemical and Solid-State Letters 4, no. 12 (2001): A197. http://dx.doi.org/10.1149/1.1413183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Demirbas, A. "Direct Use of Methanol in Fuel Cells." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30, no. 6 (January 29, 2008): 529–35. http://dx.doi.org/10.1080/15567030600817159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chu, D. "Novel electrocatalysts for direct methanol fuel cells." Solid State Ionics 148, no. 3-4 (June 2, 2002): 591–99. http://dx.doi.org/10.1016/s0167-2738(02)00124-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Borchardt, John K. "Novel catalysts for direct methanol fuel cells." Materials Today 8, no. 12 (December 2005): 19. http://dx.doi.org/10.1016/s1369-7021(05)71208-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Wenpeng, and Chao-Yang Wang. "Electron transport in direct methanol fuel cells." Journal of Power Sources 164, no. 2 (February 2007): 561–66. http://dx.doi.org/10.1016/j.jpowsour.2006.11.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jörissen, L., V. Gogel, J. Kerres, and J. Garche. "New membranes for direct methanol fuel cells." Journal of Power Sources 105, no. 2 (March 2002): 267–73. http://dx.doi.org/10.1016/s0378-7753(01)00952-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Falcão, D. S., V. B. Oliveira, C. M. Rangel, and A. M. F. R. Pinto. "Review on micro-direct methanol fuel cells." Renewable and Sustainable Energy Reviews 34 (June 2014): 58–70. http://dx.doi.org/10.1016/j.rser.2014.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Surampudi, S., S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. K. Surya Prakash, and G. A. Olah. "Advances in direct oxidation methanol fuel cells." Journal of Power Sources 47, no. 3 (January 1994): 377–85. http://dx.doi.org/10.1016/0378-7753(94)87016-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shukla, A. K., M. K. Ravikumar, and K. S. Gandhi. "Direct methanol fuel cells for vehicular applications." Journal of Solid State Electrochemistry 2, no. 2 (March 11, 1998): 117–22. http://dx.doi.org/10.1007/s100080050075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pivovar, Bryan S., Yuxin Wang, and E. L. Cussler. "Pervaporation membranes in direct methanol fuel cells." Journal of Membrane Science 154, no. 2 (March 1999): 155–62. http://dx.doi.org/10.1016/s0376-7388(98)00264-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jiang, Rongzhong, and Deryn Chu. "Durability Evaluation of Direct Methanol Fuel Cells." ECS Transactions 1, no. 8 (December 21, 2019): 469–81. http://dx.doi.org/10.1149/1.2214577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zelenay, Piotr. "Performance Durability of Direct Methanol Fuel Cells." ECS Transactions 1, no. 8 (December 21, 2019): 483–95. http://dx.doi.org/10.1149/1.2214578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hwang, Bing-Joe, Subramanyam Sarma Loka, Ching-Hsiang Chen, Guo-Rung Wang, Din-Goa Liu, and Jyh-Fu Lee. "Nanostructured Materials for Direct Methanol Fuel Cells." ECS Transactions 3, no. 1 (December 21, 2019): 1289–96. http://dx.doi.org/10.1149/1.2356248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Siebke, Anette, Frank Meier, Gerhart Eigenberger, and Manfred Fischer. "Modeling of Liquid Direct Methanol Fuel Cells." Chemie Ingenieur Technik 73, no. 6 (June 2001): 763. http://dx.doi.org/10.1002/1522-2640(200106)73:6<763::aid-cite7632222>3.0.co;2-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Oliveira, V. B., C. M. Rangel, and A. M. F. R. Pinto. "Water management in direct methanol fuel cells." International Journal of Hydrogen Energy 34, no. 19 (October 2009): 8245–56. http://dx.doi.org/10.1016/j.ijhydene.2009.07.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dai, Guangjun, Qingwei Wang, Shujie Xue, Guoliang Wang, Zhiqing Zou, Nengfei Yu, Qinghong Huang, Lijun Fu, and Yuping Wu. "A sensor of liquid methanol for direct methanol fuel cells." Analytica Chimica Acta 1177 (September 2021): 338785. http://dx.doi.org/10.1016/j.aca.2021.338785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shukla, A. K., and R. K. Raman. "Methanol-Resistant Oxygen-Reduction Catalysts for Direct Methanol Fuel Cells." Annual Review of Materials Research 33, no. 1 (August 2003): 155–68. http://dx.doi.org/10.1146/annurev.matsci.33.072302.093511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wippermann, K., A. Löhmer, A. Everwand, M. Müller, C. Korte, and D. Stolten. "Study of Complete Methanol Depletion in Direct Methanol Fuel Cells." Journal of The Electrochemical Society 161, no. 4 (2014): F525—F534. http://dx.doi.org/10.1149/2.085404jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wasmus, S., and A. Küver. "Methanol oxidation and direct methanol fuel cells: a selective review." Journal of Electroanalytical Chemistry 461, no. 1-2 (January 1999): 14–31. http://dx.doi.org/10.1016/s0022-0728(98)00197-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lu, Xiaoqing, Zhigang Deng, Chen Guo, Weili Wang, Shuxian Wei, Siu-Pang Ng, Xiangfeng Chen, Ning Ding, Wenyue Guo, and Chi-Man Lawrence Wu. "Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition." ACS Applied Materials & Interfaces 8, no. 19 (May 4, 2016): 12194–204. http://dx.doi.org/10.1021/acsami.6b02932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhao, T. S., W. W. Yang, R. Chen, and Q. X. Wu. "Towards operating direct methanol fuel cells with highly concentrated fuel." Journal of Power Sources 195, no. 11 (June 1, 2010): 3451–62. http://dx.doi.org/10.1016/j.jpowsour.2009.11.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kamaruddin, M. Z. F., S. K. Kamarudin, W. R. W. Daud, and M. S. Masdar. "An overview of fuel management in direct methanol fuel cells." Renewable and Sustainable Energy Reviews 24 (August 2013): 557–65. http://dx.doi.org/10.1016/j.rser.2013.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Buie, C. R., D. Kim, S. Litster, and J. G. Santiago. "An Electro-osmotic Fuel Pump for Direct Methanol Fuel Cells." Electrochemical and Solid-State Letters 10, no. 11 (2007): B196. http://dx.doi.org/10.1149/1.2772083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yan, X. H., P. Gao, G. Zhao, L. Shi, J. B. Xu, and T. S. Zhao. "Transport of highly concentrated fuel in direct methanol fuel cells." Applied Thermal Engineering 126 (November 2017): 290–95. http://dx.doi.org/10.1016/j.applthermaleng.2017.07.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shah, Ms Vaibhavi, Ms Nidhi Pandya, Ms Unnati Dharaiya, Mr Yash Kansara, and Dr Rashmi Kumar. "Direct Methanol Fuel Cells towards Sustainable Future: An Indian Perspective." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (November 30, 2022): 227–36. http://dx.doi.org/10.22214/ijraset.2022.47223.

Full text
Abstract:
Abstract: As we head towards a global depletion in traditional fossil fuels, the newly developed and sustainable fuel cells will be the rescue. This review paper briefly discusses the unpopular topic of Direct Methanol based Fuel Cells usage and production in India. This paper also highlights and explains their critical features by introducing the topic, starting with DMFC basics and how greener methanol is produced for the cell. We have clearly compared DMFC and other already existing fuel cells. As DMFC is a greener solution, its working principle is also stated. We discuss the various unique components that set DMFCs apart from other fuel cells and why we should surge the idea of replacing traditional fuel cells like Metal-ion based fuel cells and Hydrogen Fuel Cells. Concerning other fuel cells currently used in the market, DMFCs are predominantly cost-effective, adaptive to consumers' needs, and more efficient than other fuel cells. Alternate eco-friendly ways to produce methanol (biomethanol) for DMFCs have not only benefited consumers to use DMFCs but have also resulted in more demand for the fuel cell. A global perspective of DMFCs regarding the demand by various countries importing and exporting components (electrode, membrane) and application-based result. Amongst all the nationwide competitors, North America has the largest market for DMFCs. Meanwhile, Asia Pacific is anticipated to take charge during 2021-2028, and the majority of demand is rising from China, Japan, Germany, and India. An Indian perspective gives credit to Niti Aayog's "Methanol Economy" program, which focuses on different parameters to produce fuel since the low cost of coal in India provides an opportunity to produce a range of products from coal such as methanol, olefins, DME, and others at a competitive price
APA, Harvard, Vancouver, ISO, and other styles
42

Steckmann, Kai. "Extending EV Range with Direct Methanol Fuel Cells." World Electric Vehicle Journal 3, no. 3 (September 25, 2009): 647–50. http://dx.doi.org/10.3390/wevj3030647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Basri, S., S. K. Kamarudin, W. R. W. Daud, Z. Yaakob, and A. A. H. Kadhum. "Novel Anode Catalyst for Direct Methanol Fuel Cells." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/547604.

Full text
Abstract:
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1catalyst.
APA, Harvard, Vancouver, ISO, and other styles
44

Thomas, S. C. "Direct Methanol Fuel Cells: Cathode Evaluation and Optimization." ECS Proceedings Volumes 1998-27, no. 1 (January 1998): 327–40. http://dx.doi.org/10.1149/199827.0327pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Saheb, Amir H., and Seong S. Seo. "Polyaniline/Au Electrodes for Direct Methanol Fuel Cells." Analytical Letters 44, no. 12 (August 2011): 2221–28. http://dx.doi.org/10.1080/00032719.2010.546031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ren, Xiaoming, Mahlon S. Wilson, and Shimshon Gottesfeld. "High Performance Direct Methanol Polymer Electrolyte Fuel Cells." Journal of The Electrochemical Society 143, no. 1 (January 1, 1996): L12—L15. http://dx.doi.org/10.1149/1.1836375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lan, Aidong, and Alexander S. Mukasyan. "Perovskite-Based Catalysts for Direct Methanol Fuel Cells." Journal of Physical Chemistry C 111, no. 26 (July 2007): 9573–82. http://dx.doi.org/10.1021/jp067343p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Grinberg, V. A., T. L. Kulova, A. M. Skundin, and A. A. Pasynskii. "Nanostructured cathodic catalysts for direct methanol fuel cells." Russian Journal of Electrochemistry 43, no. 1 (January 2007): 70–74. http://dx.doi.org/10.1134/s1023193507010107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

ZHANG, X., A. GLUSEN, and R. GARCIAVALLS. "Porous lignosulfonate membranes for direct methanol fuel cells." Journal of Membrane Science 276, no. 1-2 (May 1, 2006): 301–7. http://dx.doi.org/10.1016/j.memsci.2005.10.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Prakash, Shruti, William Mustain, and Paul A. Kohl. "Carbon dioxide vent for direct methanol fuel cells." Journal of Power Sources 185, no. 1 (October 2008): 392–400. http://dx.doi.org/10.1016/j.jpowsour.2008.06.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography