Academic literature on the topic 'Direct propane fuel cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Direct propane fuel cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Direct propane fuel cells"
Khakdaman, Hamidreza, Yves Bourgault, and Marten Ternan. "A Mathematical Model of a Direct Propane Fuel Cell." Journal of Chemistry 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/102313.
Full textZhang, Yapeng, Fangyong Yu, Xiaoqiang Wang, Qian Zhou, Jiang Liu, and Meilin Liu. "Direct operation of Ag-based anode solid oxide fuel cells on propane." Journal of Power Sources 366 (October 2017): 56–64. http://dx.doi.org/10.1016/j.jpowsour.2017.08.111.
Full textVafaeyan, Shadi, Alain St-Amant, and Marten Ternan. "Nickel Alloy Catalysts for the Anode of a High Temperature PEM Direct Propane Fuel Cell." Journal of Chemistry 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/151638.
Full textParackal, Bhavana, Hamidreza Khakdaman, Yves Bourgault, and Marten Ternan. "An Investigation of Direct Hydrocarbon (Propane) Fuel Cell Performance Using Mathematical Modeling." International Journal of Electrochemistry 2018 (December 2, 2018): 1–18. http://dx.doi.org/10.1155/2018/5919874.
Full textLo Faro, Massimiliano, Sabrina Campagna Zignani, and Antonino Salvatore Aricò. "Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells." Materials 13, no. 14 (July 20, 2020): 3231. http://dx.doi.org/10.3390/ma13143231.
Full textSavadogo, Oumarou. "On the materials issues for pefc applications." Chemical Industry 58, no. 6 (2004): 286–94. http://dx.doi.org/10.2298/hemind0406286s.
Full textAbu-Saied, M. A., Emad Ali Soliman, Khamael M. Abualnaj, and Eman El Desouky. "Highly Conductive Polyelectrolyte Membranes Poly(vinyl alcohol)/Poly(2-acrylamido-2-methyl propane sulfonic acid) (PVA/PAMPS) for Fuel Cell Application." Polymers 13, no. 16 (August 8, 2021): 2638. http://dx.doi.org/10.3390/polym13162638.
Full textPotemkin, Dmitriy I., Vladimir N. Rogozhnikov, Sergey I. Uskov, Vladislav A. Shilov, Pavel V. Snytnikov, and Vladimir A. Sobyanin. "Coupling Pre-Reforming and Partial Oxidation for LPG Conversion to Syngas." Catalysts 10, no. 9 (September 21, 2020): 1095. http://dx.doi.org/10.3390/catal10091095.
Full textYang, Hye-Min, Won-Ki Nam, and Dong-Wha Park. "Production of Nanosized Carbon Black from Hydrocarbon by a Thermal Plasma." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 3744–49. http://dx.doi.org/10.1166/jnn.2007.003.
Full textYang, Hye-Min, Won-Ki Nam, and Dong-Wha Park. "Production of Nanosized Carbon Black from Hydrocarbon by a Thermal Plasma." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 3744–49. http://dx.doi.org/10.1166/jnn.2007.18064.
Full textDissertations / Theses on the topic "Direct propane fuel cells"
Parackal, Bhavana. "An Investigation of Low Temperature Direct Propane Fuel Cells." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35896.
Full textKhakdaman, Hamidreza. "A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow Field." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22732.
Full textPsofogiannakis, George. "A mathematical model for a direct propane phosphoric acid fuel cell." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26424.
Full textVafaeyan, Shadi. "A Density Functional Theory of a Nickel-based Anode Catalyst for Application in a Direct Propane Fuel Cell." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23316.
Full textSultan, Jassim. "Direct methanol fuel cells /." Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,162066.
Full textJoseph, Krishna Sathyamurthy. "Hybrid direct methanol fuel cells." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44777.
Full textKim, Hyea. "High energy density direct methanol fuel cells." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37106.
Full textYu, Eileen Hao. "Development of direct methanol alkaline fuel cells." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289171.
Full textPereira, Joana Patrícia Carvalho. "Passive direct ethanol fuel cells: modeling studies." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11407.
Full textO presente trabalho teve como objetivo o estudo de modelação de uma célula de combustível com injeção direta e passiva de etanol operando em condições ambientais. Este estudo foi desenvolvido tendo em conta a importância crescente dos sistemas com alimentação direta e passiva de etanol como solução para as aplicações portáteis. No decurso deste trabalho, foi desenvolvido um modelo matemático para a célula passiva, em estado estacionário e a uma dimensão, incorporando o transporte de calor e massa bem como as reações eletroquímicas que ocorrem no ânodo e no cátodo da célula de combustível. Este modelo simplificado pode ser rapidamente implementado usando métodos numéricos simples existentes no Excel, e reproduz de modo satisfatório os dados experimentais obtidos. Neste trabalho, foi também desenvolvida uma instalação laboratorial para determinação experimental das curvas de polarização e de potência da célula. Para esse fim, foi concebida e construída uma célula com uma área ativa de 25 cm2. Um estudo experimental detalhado para a célula passiva operando sob condições ambientais é apresentado nesta tese. As previsões do modelo foram comparadas com os resultados experimentais e verificou-se uma grande concordância entre ambos. Deste modo, o funcionamento da célula de combustível com injeção direta e passiva de etanol foi explicado à luz das previsões do modelo para o atravessamento de metanol e de água através da membrana. O efeito das condições de operação (tais como a concentração de etanol na alimentação ao ânodo e a densidade de corrente), bem como de parâmetros de configuração (materiais que constituem as camadas de difusão e espessura da membrana polimérica), no desempenho da célula foi estudado detalhadamente, e as previsões do modelo reproduziram satisfatoriamente os resultados obtidos. Dada a escassa informação existente sobre este tema na literatura atual, os resultados obtidos neste estudo são de elevado interesse e apresentam grande importância para o futuro desenvolvimento de células de combustível com injeção direta e passiva de etanol.
Bearing in mind that the passive feed Direct Ethanol Fuel Cell (DEFC) systems emerge as a solution for portable applications, the main objective of this thesis was the modelling study of a passive feed DEFC working under ambient conditions. A steady state, one dimensional and non-isothermal model was developed, accounting for coupled heat and mass transfer processes along with the electrochemical reactions occurring in the fuel cell. This simplified model was rapidly implemented using simple numerical tools as Excel, and reproduced with satisfactory accuracy the experimental data. An experimental set-up was implemented in order to determine the cell polarization and power density curves. For the experimental studies, an “inhouse” passive feed DEFC with an active area of 25 cm2 was designed, and a detailed experimental characterization of the cell working under ambient conditions was performed. The model predictions were compared with the experimental results, and a very successful accuracy was found. Therefore, the experimental results could be explained under the light of the model predictions concerning both ethanol and water crossover. Moreover, the effect of operating conditions (ethanol feed concentration and current density) and design parameters (anode diffusion layer material and thickness, anode catalyst loading and membrane thickness) on the fuel cell performance was intensively investigated. The model proved to predict accurately the trends of the effect of the different parameters on both ethanol and water crossover, and subsequently on the cell performance. Given the lack of information concerning this issue in the actual literature, the results achieved in this work provide very interesting and useful information for the future development of passive DEFCs.
Ye, Qiang. "Spontaneous hydrogen evolution in direct methanol fuel cells /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MECH%202005%20YEQ.
Full textBooks on the topic "Direct propane fuel cells"
Corti, Horacio R., and Ernesto R. Gonzalez, eds. Direct Alcohol Fuel Cells. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7708-8.
Full textV, Baglio, and Antonucci V, eds. Direct methanol fuel cells. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textLiang, Zhen-Xing, and Tim S. Zhao, eds. Catalysts for Alcohol-Fuelled Direct Oxidation Fuel Cells. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849734783.
Full textR, Narayanan S., Gottesfeld Shimshon, Zawodzinski Thomas A, Electrochemical Society. Energy Technology Division., Electrochemical Society. Physical Electrochemistry Division., Electrochemical Society Battery Division, and Electrochemical Society Meeting, eds. Direct methanol fuel cells: Proceedings of the international symposium. Pennington, NJ: Electrochemical Society, 2001.
Find full textLiu, Hansan, and Jiujun Zhang. Electrocatalysis of direct methanol fuel cells: From fundamentals to applications. Weinheim: Wiley-VCH, 2009.
Find full textWorkshop on Direct Methanol-Air Fuel Cells (1990 Georgetown University). Proceedings of the Workshop on Direct Methanol-Air Fuel Cells. Pennington, NJ: Electrochemical Society, 1992.
Find full textShizhong, Chen, ed. Zhi zi jiao huan mo ran liao dian chi de shui guan li yan jiu. Beijing: Ke xue chu ban she, 2011.
Find full textLiu, Hansan, and Jiujun Zhang, eds. Electrocatalysis of Direct Methanol Fuel Cells. Wiley, 2009. http://dx.doi.org/10.1002/9783527627707.
Full textNanomaterials for Direct Alcohol Fuel Cells. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-03784-3.
Full textBook chapters on the topic "Direct propane fuel cells"
van den Bossche, Michael, and Steven McIntosh. "Direct Hydrocarbon Solid Oxide Fuel Cells." In Fuel Cells, 31–76. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5785-5_3.
Full textHsueh, Kan-Lin, Li-Duan Tsai, Chiou-Chu Lai, and Yu-Min Peng. "Direct Methanol Fuel Cells." In Electrochemical Technologies for Energy Storage and Conversion, 701–27. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639496.ch15.
Full textLarminie, James, and Andrew Dicks. "Direct Methanol Fuel Cells." In Fuel Cell Systems Explained, 141–61. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118878330.ch6.
Full textCorti, Horacio R., and Ernesto R. Gonzalez. "Introduction to Direct Alcohol Fuel Cells." In Direct Alcohol Fuel Cells, 1–32. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_1.
Full textGonzalez, Ernesto R., and Andressa Mota-Lima. "Catalysts for Methanol Oxidation." In Direct Alcohol Fuel Cells, 33–62. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_2.
Full textSolorza-Feria, O., and F. Javier Rodríguez Varela. "Pt and Pd-Based Electrocatalysts for Ethanol and Ethylene Glycol Fuel Cells." In Direct Alcohol Fuel Cells, 63–78. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_3.
Full textGomes, Janaina Fernandes, Patricia Maria Patrizi Pratta, and Germano Tremiliosi-Filho. "Electro-oxidation of 3-Carbon Alcohols and Its Viability for Fuel Cell Application." In Direct Alcohol Fuel Cells, 79–98. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_4.
Full textTicianelli, Edson A., and Fabio H. B. Lima. "Nanostrutured Electrocatalysts for Methanol and Ethanol-Tolerant Cathodes." In Direct Alcohol Fuel Cells, 99–119. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_5.
Full textCorti, Horacio R. "Membranes for Direct Alcohol Fuel Cells." In Direct Alcohol Fuel Cells, 121–230. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_6.
Full textBruno, Mariano M., and Federico A. Viva. "Carbon Materials for Fuel Cells." In Direct Alcohol Fuel Cells, 231–70. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7708-8_7.
Full textConference papers on the topic "Direct propane fuel cells"
Bharath, Sudharsan. "Low-Temperature Direct Propane Polymer Electrolyte Membrane Fuel Cell (DPFC)." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97001.
Full textMilcarek, Ryan J., and Jeongmin Ahn. "Micro-Tubular Flame-Assisted Fuel Cell Power Generation Running Propane and Butane." In ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7175.
Full textCzernichowski, Albin, Mieczyslaw Czernichowski, and Krystyna Wesolowska. "GlidArc-Assisted Production of Synthesis Gas Through Propane Partial Oxidation." In ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1716.
Full textCzernichowski, Albin, Piotr Czernichowski, and Krystyna Wesolowska. "Plasma-Catalytical Partial Oxidation of Various Carbonaceous Feeds Into Synthesis Gas." In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2537.
Full textKajitani, S., C. L. Chen, M. Oguma, M. Alam, and K. T. Rhee. "Direct Injection Diesel Engine Operated with Propane - DME Blended Fuel." In International Fall Fuels and Lubricants Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982536.
Full textDaly, Joseph M., and Mohammad Farooque. "Effective Sulfur Control for Fuel Cells: FCE Experience." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33192.
Full textNarayanan, S. R., Thomas Valdez, and Andrew Kindler. "Status of Direct Methanol Fuel Cells." In 1st International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-5943.
Full textScott, K. "Direct methanol fuel cells for transportation." In IEE Seminar on Electric, Hybrid and Fuel Cell Vehicles. IEE, 2000. http://dx.doi.org/10.1049/ic:20000263.
Full textNarayanan, S. R., T. Valdez, N. Rohatgi, W. Chun, G. Hoover, and G. Halpert. "Recent advances in direct methanol fuel cells." In Fourteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.99TH8371). IEEE, 1999. http://dx.doi.org/10.1109/bcaa.1999.795969.
Full textPolk, A. C., C. M. Gibson, N. T. Shoemaker, K. K. Srinivasan, and S. R. Krishnan. "Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels." In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60080.
Full textReports on the topic "Direct propane fuel cells"
Hamdan, Monjid, and John A. Kosek. Advanced direct methanol fuel cells. Final report. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/807456.
Full textFlorjanczyk, Zbignlew. Polymeric Membranes for Direct Methanol Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada379118.
Full textAdzic, Radoslav. New Catalysts for Direct Methanol Oxidation Fuel Cells. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/770455.
Full textGurau, Bogdan. Improved Flow-Field Structures for Direct Methanol Fuel Cells. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1114198.
Full textMcGrath, James E. New Proton Exchange Membranes for Direct Methanol Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada440754.
Full textNarayanan, S. R., W. Chun, and T. I. Valdez. Recent advances in high-performance direct methanol fuel cells. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460283.
Full textLukehart, Charles M. Nanocomposites as Designed Catalysts for Direct Methanol Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada414697.
Full textCarson, Stephen, David Mountz, Wensheng He, and Tao Zhang. Novel Materials for High Efficiency Direct Methanol Fuel Cells. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1170611.
Full textLvov, S. N., H. R. Allcock, X. Y. Zhou, M. A. Hofmann, E. Chalkova, M. V. Fedkin, J. A. Weston, and C. M. Ambler. High temperature direct methanal-fuel proton exchange membrane fuel cells. Final report. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/820976.
Full textCelik, Ismail B. Direct Utilization of Coal Syngas in High Temperature Fuel Cells. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1163485.
Full text