Academic literature on the topic 'Direct-reduced iron'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Direct-reduced iron.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Direct-reduced iron"
INABA, Shinichi. "Overview of New Direct Reduced Iron Technology." Tetsu-to-Hagane 87, no. 5 (2001): 221–27. http://dx.doi.org/10.2355/tetsutohagane1955.87.5_221.
Full textAnameric, Basak, and S. Komar Kawatra. "PROPERTIES AND FEATURES OF DIRECT REDUCED IRON." Mineral Processing and Extractive Metallurgy Review 28, no. 1 (January 2007): 59–116. http://dx.doi.org/10.1080/08827500600835576.
Full textAnameric, B., and S. K. Kawatra. "Conditions for making direct reduced iron, transition direct reduced iron and pig iron nuggets in a laboratory furnace — Temperature-time transformations." Mining, Metallurgy & Exploration 24, no. 1 (February 2007): 41–50. http://dx.doi.org/10.1007/bf03403357.
Full textAhmad, Jaleel Kareem. "Inhibition of Reoxidation of Direct Reduced Iron ( DRI) or Sponge Iron." International Journal of Materials Science and Applications 4, no. 2 (2015): 7. http://dx.doi.org/10.11648/j.ijmsa.s.2015040201.12.
Full textAbdElmomen, S. S. "Reoxidation of direct reduced iron in ambient air." Ironmaking & Steelmaking 41, no. 2 (December 6, 2013): 107–11. http://dx.doi.org/10.1179/1743281213y.0000000105.
Full textSitov, Alexandr N., Vladimir A. Malovechko, and Andrey E. Slitsan. "SEA TRANSPORTATION OF DIRECT REDUCED IRON IN BULK." Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 10, no. 6 (December 28, 2018): 1162–78. http://dx.doi.org/10.21821/2309-5180-2018-10-6-1162-1178.
Full textMaldonado-Ruíz, S. I., D. I. Martínez, A. Velasco, and R. Colás. "Wear of white cast irons by impact of direct reduced iron pellets." Wear 259, no. 1-6 (July 2005): 361–66. http://dx.doi.org/10.1016/j.wear.2005.02.061.
Full textLu, Wei-Kao. "ChemInform Abstract: Kinetics and Mechanisms in Direct Reduced Iron." ChemInform 30, no. 41 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199941279.
Full textHuitu, Kaisa, Mikko Helle, Hannu Helle, Marko Kekkonen, and Henrik Saxén. "Optimization of Midrex Direct Reduced Iron Use in Ore-Based Steelmaking." steel research international 86, no. 5 (September 2, 2014): 456–65. http://dx.doi.org/10.1002/srin.201400091.
Full textKim, Geonu, and Petrus Christiaan Pistorius. "Strength of Direct Reduced Iron Following Gas-Based Reduction and Carburization." Metallurgical and Materials Transactions B 51, no. 6 (September 21, 2020): 2628–41. http://dx.doi.org/10.1007/s11663-020-01958-x.
Full textDissertations / Theses on the topic "Direct-reduced iron"
Bilen, Idil. "Direct Reduced Iron Production from EAF Slags in Fixed Bed Furnace." Thesis, KTH, Materialvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-117981.
Full textELANGO, SABARISH. "Life cycle assessment of coal based direct-reduced iron production in India." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287339.
Full textJärnsvamp producerat genom direktreduktion (Direct-Reduced Iron; DRI) innefattar användning av naturgas eller kol för reduktion av järnmalm till järn genom karboterma reaktioner vid en temperatur under dess smältpunkt, vilket eliminerar behovet av en masugn. Ca 25% av järnproduktionen i Indien sker genom direkt reduktion. Energin kommer i 73% av fallen från kol, vilket gör processen är väldigt kolberoende. I sin tur bidrar detta till en betydande energianvändning och stora koldioxidutsläpp. Låg kvalité på inhemska resurser (framförallt kol) kräver import av en stor del av processråvarorna. För att förstå den övergripande effekten av försörjningskedjan av DRI- eller svampjärnproduktionen genomfördes en livscykelbedömning i fyra steg - gruvdrift, transport, anrikning (dvs tillverkning av malmpellets och koltvätt) och DRI-produktion. Cirka 315 kolbaserade DRI-produktionsanläggningar kartlades med GIS för att identifiera kluster av produktionsanläggningar i större järnproducerande regioner. Vägt genomsnittligt specifikt energianvändning och utsläpp beräknades för sju sådana kluster (med total klusterkapacitet) baserat på regionala råvarukvaliteter och transportavstånd från olika gruvor, hamnar och förädlingsanläggningar. Resultaten indikerar en total specifik energiförbrukning på 27,24 GJ/ton DRI med ett utsläpp på 2,8 tCO2eq, 2,6 kg NOx, 1,8 kg SOx och 1,4 kg PM2,5 per ton DRI. De specifika energi- och utsläppsvärdena användes för att beräkna de totala årliga utsläppen genom att multiplicera med DRI-produktionsmängden för 2019, vilken motsvarade 27,8 miljoner ton. Den årliga mitt- och slutpunktseffekten enligt ReCiPe 2016 (landsmässiga faktorer där så är tillämpliga) beräknades sedan. DRI-industrin har en global uppvärmningspotential motsvarande 77,31 miljoner tCO2eq/år, 59,02 tusen tSO2eq/år i försurningspotential och 287,2 tusen tPM2,5eq/år i potential för bildning av fint damm. Detta beräknas förkorta livslängden hos människor världen över med total cirka 270 000 år och 230 år av artförlust (främst i markbundna ekosystem). En känslighetsanalys utfördes för att förstå effekterna av viktiga påverkande parametrar (effekt av malmkvalitet och kolkvalitet, effekt av import av malm och kol). Vissa utvecklingsscenarier, såsom ökad koltvättkapacitet, skifte i transport från väg till järnväg, ökad penetration av spillvärmeåtervinning, effekten av strängare föreskrifter etcetera diskuterades tillsammans med tillvägagångssätt för bränsleomkoppling från kol till naturgas och sedan från naturgas till väte.
Qin, Hongye. "Investigation of Direct-Reduced Iron as a Filter Media for Phosphorus Removal in Wastewater Applications." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39973.
Full textErwee, M. W. (Markus Wouter). "Nitrogen in SL/RN direct reduced iron : origin and effect on the electric steelmaking process." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40830.
Full textDissertation (MEng)--University of Pretoria, 2013.
gm2014
Materials Science and Metallurgical Engineering
unrestricted
Delport, Hendrikus Mattheus Wessels. "The development of a DRI process for small scale EAF-based steel mills." Thesis, Stellenbosch : Stellenbosch University, 2010. http://hdl.handle.net/10019.1/17442.
Full textENGLISH ABSTRACT: This thesis deals with the development of a new process for the production of Direct Reduced Iron (DRI), intended for use specifically by small scale Electric Arc Furnace (EAF) based steel mills, who require small volumes of DRI. The term development as used here is taken to include such aspects as conceptual design, theoretical verification and initial practical testing. The rise of EAF steelmaking brought about the metamorphosis of steel scrap from a waste product into a valuable raw material. Scrap prices rose steeply during the period 1995 to 2009 compelling EAF steelmakers, wishing to have more control over the cost of their input material, to seek for scrap supplements or alternatives. DRI has become an accepted and sought after supplement, or even complete alternative, to steel scrap. Adding DRI to an EAF charge has a range of advantages, including the dilution of tramp elements and possible cost benefits, but it does have negative effects. These include the lowering of the scrap to liquid metal yield and an increase in power consumed. The effect of charging DRI to a small EAF is quantified. The maximum DRI that may be added to the burden whilst still maintaining the present steelmaking volume, is shown to be as high as 50% if charged continuously, and the maximum price payable for DRI, is shown to be approximately 80% of base grade scrap price. Finally other requirements unique to small scale EAF operators are considered in order to prepare a schedule of requirements for a DRI plant specifically for small scale EAF steel mills. A review of published information on existing DRI production technology, processes and plants is undertaken is establish the fit of existing processes to the requirements set. Initially the thermodynamics and kinetics of iron ore reduction and coal gasification, specifically downdraft gasification are reviewed. Thereafter existing processes are reviewed. Shaft based processes and rotary kiln based processes are identified as possible suitors to the requirements. Limitations of these processes, specifically heat transfer in rotary kilns and the pressure drop over a reduction shafts are investigated. Finally a typical process in each of the main process classes is adjudicated against the set requirements. None is found to match the set requirements. A new process is proposed that is claimed to better suit to small scale operation. The uniqueness of the process is embodied in the combination of existing technologies of downdraft gasification and iron ore reduction in a shaft, in a single reactor. The process consists of two shafts, one placed above the other. Iron ore is charged into the top shaft, called the pre-heat shaft, where it is pre-heated and lightly reduced to wustite with gas from the bottom shaft, called the reduction shaft. The pre-heated ore is then charged together with coal into the reduction shaft. Gasification air is drawn into the top of the reduction shaft where the coal is gasified in a downdraft gasifier, generating reduction gas which reduces the ore as the gas moves concurrently with the iron ore. The exit gas is cleaned and pumped to the pre-heat shaft where it combusted with air to pre-heat the iron ore in the pre-heat shaft. The concept is analysed thermodynamically using amongst others, FactSage, and is shown to be thermodynamically viable. To test the concept process concept practically, an extremely small pilot plant with a production rate of 2kg DRI/h, consisting of only a gasifier/reduction shaft, was designed and constructed using reduction rate data obtained from literature supplemented with data obtained from thermogravimetric analysis of CO reduction of lump Sishen hematite. Pilot Plant trials were performed using various reductant sources. The degree of metallizaion was analysed using visual inspection of cut and polished samples compared to calibrated standards. Analysis of the results indicate that coal rate and production rate influence the degree of reduction positively and negatively. The conclusions arrived at include the fact that the process is thermodynamically viable, that it was possible to reduce iron ore in a simplified pilot plant, and that the process was found to be stable and controllable. It is recommended that a larger scale pilot plant, embodying the full proposed flow sheet be erected to test the process more completely.
AFRIKAANSE OPSOMMING: Die tesis handel oor die the ontwikkeling van ‘n nuwe proses vir die vervaardiging van sponsyster. Die proses is beoog spesifiek vir gebruik deur kleinskaalse Elektriese Boogoond (EBO) gebaseerde staal aanlegte, wat kleiner hoeveelhede sponsyster benodig. Die term ontwikkeling soos hier gebruik word aanvaar om aspekte soos konseptuele ontwerp, teoretiese verifikasie en aanvanklike toetsing te behels. Die vinnige groei van EBO staalvervaardiging het skroot getransformeer van weggooiproduk tot waardevolle grondstof. Die prys van skroot het skerp gestyg gedurende die periode 1995 to 2009. EBO gebaseerde staal produsente, in ‘n poging om meer beheer te hê oor die koste van hul insetmateriaal, het hul in ‘n toenemende mate tot skrootalternatiewe gewend. Sponsyster het ‘n aanvaarde en gewaardeerde byvoeging, en selfs alternatief tot staalskroot geword. Die byvoeging van sponsyster by die lading van ‘n tipiese EBO het besliste voordele, maar het dit ook nadelige effekte. Die voordele sluit die verdunning van reselemente en moontlike kostevoordele in, terwyl van die nadele die verlaging van die skroot tot vloeistaal opbrengs, en ‘n verhoging in kragverbruik, is. Die effek van die byvoeging van sponsyster tot ‘n EBO lading word gekwantifiseer. Daar word getoon dat die maksimum hoeveelheid sponsyster wat by ‘n EBO lading gevoeg kan word terwyl die hoeveelheid staal geproduseer konstant gehou word, ongeveer 50% is indien die sponsyster kontinue gelaai word, en die maksimum prys wat vir die sponsyster betaal kan word, word bereken op ongeveer 80% van die prys van basisgraad skroot. Ander vereistes uniek aan kleinskaal EBO bedrywers word oorweeg ten einde ‘n lys van vereistes vir ‘n sponsysteraanleg, uniek aan kleinskaal EBO bedrywers, te kan bepaal. ‘n Oorsig van gepubliseerde inligting oor sponsysterproduksietegnologie word onderneem ten einde die passing van bestaande prosesse met die gestelde vereistes te kan bepaal. Nadat die termodinamika en kinetika van ysterertsreduksie en steenkoolvergassing be-oordeel is, word bestaande sponsysterprosesse beskou. Skag- en Roterende oond gebaseerde prosesse word as moontlik gepaste prosesse identifiseer. Hitte-oordrag en die drukval oor gepakte beddens, synde tipiese beperkings eie aan die twee prosesse, woord beskou. Tipiese prosesse in elk van die hoofklasse van prosesse word ten laaste be-oordeel aan die gestelde kriteria. Daar word bevind dat geeneen van die bestaande prosesse aan die vereistes voldoen nie. ‘n Nuwe proses, wat skynbaar die behoefte van kleinskaalse EBO gebaseerde staalprodusente beter bevredig, word voorgestel. Bestaande tegnolgie word in ‘n unieke opstelling geïntegreer. Reduksie word in ‘n reduksiekag gedoen as gevolg van die ooglopende massa- en hitte-oordragvoordele van ‘n skag. Reduksiegas word verkry van steenkoolvergassing in ‘n afstroomvergasser ten einde teerverwydering in ‘n naverwerkingsstap oorbodig te maak. Die uniekheid van die proses is beliggaam in die kombinasie van ‘n steenkoolvergasser en reduksieskag in ‘n enkele reaktor. Die proses bestaan uit twee skagte, een bo die ander. Ystererts word in die boonste skag, wat die voorverhitskag genoem word, gelaai. Hier word die erts voorverhit en moontlik lig gereduseer tot wustiet met gas van die onderste skag, wat die reduksieskag genoem word. Die voorverhitte erts word saam met steenkool in die reduksieskag gelaai. Vergassingslug, word in die reduksieskag gesuig waar die steenkool in ‘n afstroomvergasser vergas word. Hierdeur word reduksiegas gegenereer wat die erts verder reduseer soos dit saamstromend met die erts af beweeg. Die uitlaatgas word gesuiwer en na die voorverhitskag gepomp waar dit verbrand word om die erts te voorverhit. Die konsep is termodinamies analiseer met gebruikmaking van onder andere FactSage, en werkbaar bevind. ‘n Baie klein, vereenvoudigde proefaanleg, met ‘n produksievermoë van 2kg DRY/uur, bestaande uit slegs ‘n reduksiekag, is ontwerp en gebou met gebruikmaking van kinetika inligting uit die literatuur aangevul met inligting uit termogravimetriese analise van die CO reduksie van Sishen hematiet. Proefaanleglopies is uitgevoer met ‘n reeks reduktantbronne. Die metallisasiegraad is bepaal deur visuele inspeksie van gesnyde, gepoleerde monsters wat vergelyk is met gekalibreerde standaarde. Analise van die resultate toon dat die steenkoolkoers ‘n positiewe verband, en die produksiekoers ‘n negatiewe verband met die metallisasiegraad het. Die slotsom waartoe gekom is, is dat die proses termodinamies werkbaar is, dat reduksie van ystererts in ‘n vereenvoudigde proefaanleg bewerk kon word, en dat die prose stabiel en beheerbaar voorgekom het. Die aanbeveling word gemaak dat ‘n groter proefaanleg wat die volledige voorgestelde vloeiskema verteenwoordig, opgerig behoort te word, ten einde die proses meer volledig te kan toets.
Sharifi, Kiasaraei Erfan. "Decarburization and Melting Behavior of Direct-reduced Iron Pellets in Steelmaking Slag." Thesis, 2010. http://hdl.handle.net/1807/25797.
Full textHsin-ChienChuang and 莊鑫堅. "Study of Crushing Strength of Direct Reduced Iron from Carbothermic Reaction of Residual Materials." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/99354756083771667175.
Full text國立成功大學
材料科學及工程學系碩博士班
98
In integrated steel plants, dusts and sludges, commonly referred to as “residual materials”, are inevitably generated during steel production. Due to high iron oxides and carbon contents, these residual materials can be converted into direct reduced iron (DRI) through the carbothermic reduction. DRI can be recycled as the feedstock of blast furnace for liquid iron production. It is known that the permeability of blast furnace would be deteriorated in case of the severe breakage of burden materials. Therefore, it is strictly required that the crushing strength of DRI has to be higher than 0.60 kg/mm2 to avoid its breakage during storage, transportation, and charging into blast furnace. The study focuses on the effect of the softening and melting temperature of slag composition based on residual materials in China Steel Company. The results compared with data of phase diagram can estimate how to adjust recipe of residual materials in order to meet the feed demand of blast furnace. The results show both basicity (B2) and FeO content can affect the softening and melting temperature of slag. When B2 is lower than 1.13, the deformation temperature is probably less than 1250℃. The solidified softened slag could intensify DRI crushing strength. At next stage, the study investigates the effect of additives to residual materials on the crushing strength of DRI. By adding proper agents, it can assure DRI crushing strength to meet the feed demand of blast furnace. The mixture (Case A) which was made of nine kinds of residual materials was composed of 28.82% oily dewater sludge, 19.15% blast furnace sludge, 17.05% basic oxygen furnace slurry, and 13.55% oily mill scale. The rest of the residual materials were basic oxygen furnace dust, blast furnace flue dust, wastes incinerator fly-ash, blast furnace high-zinc sludge, and cold-rolling sludge. Additives included powdery reagents of Fe2O3, SiO2, and graphite. Experimental conditions of the lab-scale carbothermic reaction included reaction time ranging from 10 to 20 minutes and reaction temperature between 1150 and 1250℃. Results shows adding proper amount of Fe2O3 will decrease the value of (C/Ored)mol and increase the iron content of DRI. It would raise the crushing strength of DRI. It also was found that adding a little SiO2 would induce the partially softening and melting slag phase under 1250℃ due to the lower B2 value (down to 0.89) of the residual materials specimens. The higher crushing strength of DRI was obtained due to sintering. Furthermore, the addition of graphite resulted in the value of (C/Ored)mol above 1.20. It declined the DRI strength. On the other hand, increasing reduction time or reaction temperature could enlarge effect of additives on the crushing strength of DRI. When reaction temperature decreased to 1200℃, adding 15% Fe2O3 made crushing strength of DRI higher than 0.60 kg/mm2. In in-situ process of RHF, the intact green pellet of residual materials is essential. Blending water content with residual materials affects discharge.of extruder. The appropriate water content was between 17~21%. Besides, the condition of heat fragment was conducted at 950℃ for 5 minutes. The optimal water content was 15~19% for resistance of heat fragment. Synthesizing both results, 17~19% water content is the best condition for pilot scale. The mixture (Case B) had similar composition to Case A, but BOF slurry decreased from 17.05 to 10.10% and BF flue dust increased from 2.66 to 9.20%. This recipe expected to produce worse strength of DRI due to excess carbon content. The pellets via an extruder with water content (18%) were reduced at 1200℃ for 15 minutes. The result shows the crushing strength for Case B was 0.48 kg/mm2. Adding 2, 4, 6, 8% Fe2O3 from acid regenerate plant (ARP) to Case B was reduced at 1200℃ for 15 minutes. It shows 6 and 8% Fe2O3 can increase crushing strength of DRI to 0.61 and 0.71 kg/mm2. According above results shows that high value (>1.20) of (C/Ored)mol in residual materials would cause the crushing strength of DRI under 0.60 kg/mm2. So adding appropriate Fe2O3 which consumes carbon and introduces softened slag within DRI assures the crushing strength of DRI above 0.60 kg/mm2.
Books on the topic "Direct-reduced iron"
Jerome, Feinman, Mac Rae, Donald R. 1934-, and Iron and Steel Society, eds. Direct reduced iron: Technology and economics of production and use. Warrendale, PA: Iron & Steel Society, 1999.
Find full text(Editor), Jerome Feinman, and Donald R. Mac Rae (Editor), eds. Direct Reduced Iron : Technology and Economics of Production & Use (# TB20). Iron & Steel Society, 1999.
Find full textBook chapters on the topic "Direct-reduced iron"
Cavaliere, Pasquale. "Direct Reduced Iron: Most Efficient Technologies for Greenhouse Emissions Abatement." In Clean Ironmaking and Steelmaking Processes, 419–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21209-4_8.
Full textDai, Linqing, Jinhui Peng, and Hongbo Zhu. "Optimization of the Process Variables for Making Direct Reduced Iron by Microwave Heating using Response Surface Methodology." In 2nd International Symposium on High-Temperature Metallurgical Processing, 101–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062081.ch13.
Full textDutta, Sujay Kumar, and Rameshwar Sah. "Direct Reduced Iron: Production." In Encyclopedia of Iron, Steel, and Their Alloys, 1082–108. CRC Press, 2016. http://dx.doi.org/10.1081/e-eisa-120050996.
Full textCameron, Ian, Mitren Sukhram, Kyle Lefebvre, and William Davenport. "Top Charged Direct Reduced Iron." In Blast Furnace Ironmaking, 409–28. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814227-1.00044-0.
Full textFoulds, Gary A., Geoff R. Rigby, W. Leung, Jim Falsetti, and Fred Jahnke. "Synthesis Gas Production: Comparison of Gasification with Steam Reforming for Direct Reduced Iron Production." In Natural Gas Conversion V, Proceedings ofthe 5th International Natural Gas Conversion Symposium,, 889–94. Elsevier, 1998. http://dx.doi.org/10.1016/s0167-2991(98)80544-2.
Full textBaş, Halim, and Muhammed Erkam Kocakaya. "Identifying the Relationship Between Health Expenditures and Life Expectancy at Birth." In Multidimensional Perspectives and Global Analysis of Universal Health Coverage, 285–308. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2329-2.ch011.
Full textDiMoia, John P. "Providing Reassurance and Affirmation." In Gender, Health, and History in Modern East Asia. Hong Kong University Press, 2018. http://dx.doi.org/10.5790/hongkong/9789888390908.003.0010.
Full textConference papers on the topic "Direct-reduced iron"
Desbiens, A., and A. A. Shook. "IMC-optimization of a direct reduced iron phenomenological simulator." In 4th International Conference on Control and Automation. Final Program and Book of Abstracts. IEEE, 2003. http://dx.doi.org/10.1109/icca.2003.1595061.
Full textPistorius, P., and G. Kim. "Effects of Reduction and Carburization on Strength of Direct Reduced Iron." In AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/051.
Full textA. Saif, Abdul-Wahid, Mohamed Habib, Mostafa Elshafei, and Muhammad Sabih. "Intelligent sensor for predicting the quality of reduced iron in direct reduction furnaces." In Applications (ISIEA 2009). IEEE, 2009. http://dx.doi.org/10.1109/isiea.2009.5356434.
Full textKacar, Y., G. Pistorius, and P. Kim. "Effect of Carbon Bonding State and Concentration on Melting of Direct Reduced Iron." In AISTech2019. AIST, 2019. http://dx.doi.org/10.33313/377/069.
Full textWalker, William, Ali Farhadi, George Tsvik, Tom Roesel, Naresh K. Selvarasu, Yeow Siow, and Chenn Q. Zhou. "3-D Computational Fluid Dynamic Analysis of Bustle Gas Combustion in a Direct Reduced Iron Plant." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42403.
Full textYue, Chongfeng, Lu Bai, Yicheng Hong, and Lijun Xu. "Discussion on the application of high additional value of high purity and high quality direct reduced iron." In ADVANCES IN ENERGY SCIENCE AND ENVIRONMENT ENGINEERING II: Proceedings of 2nd International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5029791.
Full textSenfuka, C., J. B. Kirabira, and J. K. Byaruhanga. "A Quantitative Evaluation of the Quality of Recycled Steel in Uganda." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85276.
Full textMusonda, Vincent, and Esther T. Akinlabi. "Quantitative Characterisation of Pearlite Morphology in Hot-Rolled Carbon Steel." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10690.
Full textTalebizadeh, P., M. A. Mehrabian, and M. Abdolzadeh. "A Study on the Different Components of Solar Radiation in Order to Calculate the Optimum Solar Angles and the Gain of Solar Energy Using Genetic Algorithm." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54854.
Full textReports on the topic "Direct-reduced iron"
Albert Calderon. Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/912620.
Full textAlbert Calderon. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/895095.
Full textAlbert Calderon. Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project. US: Calderon Energy Co, December 2006. http://dx.doi.org/10.2172/898824.
Full textCalderon, Albert. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/789666.
Full textCalderon, Albert. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/792088.
Full textAlbert Calderon. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/784611.
Full textAlbert Calderon. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/888653.
Full textCalderon, Albert. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/807238.
Full textAlbert Calderon. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/810453.
Full textAlbert Calderon. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/824008.
Full text