To see the other types of publications on this topic, follow the link: Direct-Sequence Code Division Multiple Access (DS-CDMA).

Dissertations / Theses on the topic 'Direct-Sequence Code Division Multiple Access (DS-CDMA)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Direct-Sequence Code Division Multiple Access (DS-CDMA).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, Kyungseok. "Efficient signal enhancement schemes for adaptive antenna arrays in DS-CDMA systems." Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/843053/.

Full text
Abstract:
Adaptive antenna array technology will undoubtedly form a vital part of third generation cellular systems owing to not only confining the radiated energy associated with a mobile to a small volume on the downlink but also reducing the interference due to cochannel users on the uplink. The objective of this thesis is to develop signal enhancement schemes for adaptive antenna arrays for the purpose of enhancing the quality and capacity of direct sequence code division multiple access (DS-CDMA) systems. Firstly, The signal enhancement scheme using a real symmetric array covariance matrix (RSACM) method was proposed. This proposed scheme is composed of a unitary and persymmetric transformation methods. A real symmetric array covariance matrix has the same Toeplitz-plus-Hankel matrix structure that is produced by almost total noiseless data sequence. The second proposed signal enhancement scheme consists of the rotation of signal subspace (RSS) and Toeplitz matrix approximation (TMA) methods. This proposed scheme improved the system performance by reducing the interference- plus-noise effect from the complex array covariance matrix of the pre-correlation received signal vector. The third proposed signal enhancement scheme is a modified linear signal estimator (MLSE) which involves the rank N approximation by reducing total noise eigenvalues (RANE) and TMA methods. The aim of this proposed scheme is to improve the system performance by effectively reducing the interference-plus-noise effect from the post-correlation received signal. Secondly, the computational complexity and the performance for all proposed signal enhancement schemes in this thesis are investigated and compared. The signal enhancement scheme using the RSS+TMA and MLSE methods was also proposed for a multi-rate and multicell DS-CDMA systems. The relative other-cell interference factor was analysed for a multicell condition. Finally, the performance of all proposed signal enhancement schemes is shown to be much better than that of no signal enhancement method under a single cell, multicell, single rate, and multirate conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Kocakanat, Murat. "A direct sequence - code division multiple access/binary phase shift keying (DS-CDMA/BPSK) modem design." Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bian, Yan Qing. "Advanced multi-user direct-sequence code division multiple access (DS-CDMA) detection techniques for cellular communications." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aue, Volker. "Optimum linear single user detection in direct-sequence spread-spectrum multiple access systems." Thesis, Virginia Tech, 1995. http://hdl.handle.net/10919/43609.

Full text
Abstract:

After Qualcomm's proposal of the IS-95 standard, code-division multiple access (CDMA) gained popularity as an alternative multiple-access scheme in cellular and personal communication systems (PCS). Besides the advantage of allowing asynchronous operation of the users, CDMA direct-sequence spread spectrum (DS-SS) offers resistance to frequency selective fading and graceful degradation of the performance as the number of users increases.

Orthogonality of the signals in time-division multiple access and frequency-division multiple access is inherent from the nature of the multiple access scheme. In a CDMA system, orthogonality of the signals is not guaranteed in general. Consequently, the performance of conventional correlation receivers suffers.

Sub-optimum receivers which use knowledge of the interfering signals have been investigated by other researchers. These receivers attempt to cancel the multi-user interference by despreading the interfering users. Hence, these receivers require knowledge about all the spreading codes, amplitude levels, and signal timing, and are, in general, computationally intensive.

In this thesis, a technique is presented for which a high degree of interference rejection can be obtained without the necessity of despreading each user. It is shown that exploiting spectral correlation can help mitigate the effects of the multiple-access interference. If code-on-pulse DS-SS modulation is used, a cyclic form of the Wiener filter provides substantial improvements in performance in terms of bit error rate and user capacity. Furthermore, it is shown, that a special error-criterion should be used to adapt the weights of the filter.

The computational complexity of the receiver is equivalent to that of conventional equalizers.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Beibei. "Improved Statistical Interference Suppression Techniques in Single and Multi-rate Direct Sequence Spread Spectrum Code Division Multiple Access Systems." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1173119961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carey, Daniel Jeffrey. "Statistical modelling and reduction of multiple access interference power in wideband DS-CDMA and MC-CDMA communications systems." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16342/1/Daniel_Carey_Thesis.pdf.

Full text
Abstract:
With code division multiple access (CDMA) systems being the prominent multiple access scheme for the air interface for 3G cellular systems, most standardisation bodies have based their terrestrial cellular systems on DS-CDMA (W-CDMA, UMTS, cdma2000). With 4G systems fast approaching, bringing with them improved services and quality of service standards, there is growing interest in further investigating and developing more efficient multiple access techniques such as multicarrier CDMA (MC-CDMA) systems. MC-CDMA combines multicarrier modulation (MCM), namely OFDM, with CDMA profiting from the benefits of both multiplexing techniques; as such, MC-CDMA is emerging as a possible candidate for the air interface multiple access scheme for 4G cellular systems. Multiple access interference (MAI) is a limiting factor of CDMA systems in terms of system capacity as orthogonally designed spreading sequences lose their orthogonality in the presence of timing misalignments amongst mobile subscribers in a cell; such is the case over the uplink channel. Ensuring orthogonal code properties minimises the MAI over synchronous environments, however, it is when the users are allowed to transmit asynchronously, as is the case over the uplink channel, that MAI inflicts significant performance degradation. In CDMA systems, all subscribers are active on the same frequency band simultaneously and signal separation is facilitated upon reception via the properties of the assigned spreading codes. Under asynchronous conditions the code properties alone do not provide the necessary separation and an additive MAI term remains in the detection process. In addition to the separation abilities of the spreading codes, a further method of deciphering the desired subscriber signal from the interfering subscriber signals is sought. In this thesis we propose a statistical model for both the probability density function (pdf) of the total MAI power and the corresponding bit-error rate (BER) observed during asynchronous CDMA transmission. The modelling offers the full statistic the MAI power and resulting BER, not just the first and second order statistics. In addition to statistically quantifying the MAI power, the thesis also proposes a technique for the successful reduction of MAI caused by asynchronous transmission. This interference reduction technique is derived from an ambiguity domain analysis of the asynchronous CDMA detection problem and its application to both the DS-CDMA and MC-CDMA multiplexing techniques is presented and the results show significant MAI reduction, and thus an improved the BER. A methodology for the approximation of the total MAI power pdf and the resulting BER pdf is proposed for the asynchronous DS-CDMA and MC-CDMA techniques. This methodology is derived for the use of Walsh-Hadamard (WH) and Gold spreading sequences, however, it is applicable to any given set of deterministic spreading sequences. The total MAI power pdfs of both systems are statistically modelled as being Nakagamim distributed and the corresponding BER modelling is derived from the Nakagami-m formulation offering the full statistic of both the incurred MAI power and the achievable BER. The proposed pdf acquisition methodology and statistical models can be used as analysis tools to assess the relative performances of the DS-CDMA and MC-CDMA techniques for a variety of communications environments. Here the asynchronous uplink channel is considered in the absence of fading and the results show a clear distinction between the BER performances of the MC-CDMA and DS-CDMA systems, for which the MC-CDMA system offers a superior performance for the purely asynchronous channel considered. The results suggest a higher resistance to MAI in the MC-CDMA technique in comparison to the DS-CDMA system for the considered transmission scenario. Following ambiguity function analysis of the asynchronous CDMA detection problem, the concept of dual-frequency switching is introduced to the existing DS-CDMA and MC-CDMA techniques giving rise to the proposed dual-frequency DS-CDMA (DF/DSCDMA) and dual-frequency MC-CDMA (DF/MC-CDMA) schemes. Periodically switching the carrier frequency between dual frequency bands at consecutive symbol boundaries facilitates partial CDMA signal separation upon asynchronous reception. Such switching of the carrier frequency induces a separation in frequency between offset interference signals and the reference signal; this is equivalent to shifting the energy concentration of the interference signals away form the ambiguity domain origin (representing the decision variable of the matched filter). Further MAI reduction is demonstrated through careful design of the dual carrier frequencies. The newly proposed DF systems clearly outperform the standard DS-CDMA and MC-CDMA systems when adopting equivalent spreading factors. The DF/DS-CDMA technique in particular achieves the most MAI reduction and in doing so, surpasses all other considered techniques to offer the best BER performance for the purely asynchronous channel considered. In terms of bandwidth usage, the DF/DS-CDMA band width is 1.5 times that of the DF/MC-CDMA system and from the BER results presented, one may argue that DF/MC-CDMA offers the better BER given the bandwidth usage. The multicarrier systems presented, MC-CDMA and DF/MC-CDMA, offer attractive BER performances for the bandwidth used and it is concluded that MC-CDMA is a genuine candidate for the uplink air interface multiple access scheme for future mobile cellular technologies.
APA, Harvard, Vancouver, ISO, and other styles
7

Carey, Daniel Jeffrey. "Statistical modelling and reduction of multiple access interference power in wideband DS-CDMA and MC-CDMA communications systems." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16342/.

Full text
Abstract:
With code division multiple access (CDMA) systems being the prominent multiple access scheme for the air interface for 3G cellular systems, most standardisation bodies have based their terrestrial cellular systems on DS-CDMA (W-CDMA, UMTS, cdma2000). With 4G systems fast approaching, bringing with them improved services and quality of service standards, there is growing interest in further investigating and developing more efficient multiple access techniques such as multicarrier CDMA (MC-CDMA) systems. MC-CDMA combines multicarrier modulation (MCM), namely OFDM, with CDMA profiting from the benefits of both multiplexing techniques; as such, MC-CDMA is emerging as a possible candidate for the air interface multiple access scheme for 4G cellular systems. Multiple access interference (MAI) is a limiting factor of CDMA systems in terms of system capacity as orthogonally designed spreading sequences lose their orthogonality in the presence of timing misalignments amongst mobile subscribers in a cell; such is the case over the uplink channel. Ensuring orthogonal code properties minimises the MAI over synchronous environments, however, it is when the users are allowed to transmit asynchronously, as is the case over the uplink channel, that MAI inflicts significant performance degradation. In CDMA systems, all subscribers are active on the same frequency band simultaneously and signal separation is facilitated upon reception via the properties of the assigned spreading codes. Under asynchronous conditions the code properties alone do not provide the necessary separation and an additive MAI term remains in the detection process. In addition to the separation abilities of the spreading codes, a further method of deciphering the desired subscriber signal from the interfering subscriber signals is sought. In this thesis we propose a statistical model for both the probability density function (pdf) of the total MAI power and the corresponding bit-error rate (BER) observed during asynchronous CDMA transmission. The modelling offers the full statistic the MAI power and resulting BER, not just the first and second order statistics. In addition to statistically quantifying the MAI power, the thesis also proposes a technique for the successful reduction of MAI caused by asynchronous transmission. This interference reduction technique is derived from an ambiguity domain analysis of the asynchronous CDMA detection problem and its application to both the DS-CDMA and MC-CDMA multiplexing techniques is presented and the results show significant MAI reduction, and thus an improved the BER. A methodology for the approximation of the total MAI power pdf and the resulting BER pdf is proposed for the asynchronous DS-CDMA and MC-CDMA techniques. This methodology is derived for the use of Walsh-Hadamard (WH) and Gold spreading sequences, however, it is applicable to any given set of deterministic spreading sequences. The total MAI power pdfs of both systems are statistically modelled as being Nakagamim distributed and the corresponding BER modelling is derived from the Nakagami-m formulation offering the full statistic of both the incurred MAI power and the achievable BER. The proposed pdf acquisition methodology and statistical models can be used as analysis tools to assess the relative performances of the DS-CDMA and MC-CDMA techniques for a variety of communications environments. Here the asynchronous uplink channel is considered in the absence of fading and the results show a clear distinction between the BER performances of the MC-CDMA and DS-CDMA systems, for which the MC-CDMA system offers a superior performance for the purely asynchronous channel considered. The results suggest a higher resistance to MAI in the MC-CDMA technique in comparison to the DS-CDMA system for the considered transmission scenario. Following ambiguity function analysis of the asynchronous CDMA detection problem, the concept of dual-frequency switching is introduced to the existing DS-CDMA and MC-CDMA techniques giving rise to the proposed dual-frequency DS-CDMA (DF/DSCDMA) and dual-frequency MC-CDMA (DF/MC-CDMA) schemes. Periodically switching the carrier frequency between dual frequency bands at consecutive symbol boundaries facilitates partial CDMA signal separation upon asynchronous reception. Such switching of the carrier frequency induces a separation in frequency between offset interference signals and the reference signal; this is equivalent to shifting the energy concentration of the interference signals away form the ambiguity domain origin (representing the decision variable of the matched filter). Further MAI reduction is demonstrated through careful design of the dual carrier frequencies. The newly proposed DF systems clearly outperform the standard DS-CDMA and MC-CDMA systems when adopting equivalent spreading factors. The DF/DS-CDMA technique in particular achieves the most MAI reduction and in doing so, surpasses all other considered techniques to offer the best BER performance for the purely asynchronous channel considered. In terms of bandwidth usage, the DF/DS-CDMA band width is 1.5 times that of the DF/MC-CDMA system and from the BER results presented, one may argue that DF/MC-CDMA offers the better BER given the bandwidth usage. The multicarrier systems presented, MC-CDMA and DF/MC-CDMA, offer attractive BER performances for the bandwidth used and it is concluded that MC-CDMA is a genuine candidate for the uplink air interface multiple access scheme for future mobile cellular technologies.
APA, Harvard, Vancouver, ISO, and other styles
8

Mangalvedhe, Nitin R. "Development and Analysis of Adaptive Interference Rejection Techniques for Direct Sequence Code Division Multiple Access Systems." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/28399.

Full text
Abstract:
The inadequacy of conventional CDMA receivers in a multiple access interference-limited mobile radio environment has spurred research on advanced receiver technologies. This research investigates the use of adaptive receivers for single user demodulation to overcome some of the deficiencies of a conventional receiver and, hence, enhance the system capacity. Several new adaptive techniques are proposed. The new techniques and some existing schemes are analyzed. The limitation of existing blind algorithms in multipath channels is analyzed and a new blind algorithm is proposed that overcomes this limitation. The optimal receiver structure for multi-rate spread spectrum systems is derived and the performance of this receiver in various propagation channels is investigated. The application of coherent and differentially coherent implementations of the adaptive receiver in the presence of carrier frequency offsets is analyzed. The performance of several new adaptive receiver structures for frequency offset compensation is also studied in this research. Analysis of the minimum mean-squared error receiver is carried out to provide a better understanding of the dependence of its performance on channel parameters and to explain the near-far resilience of the receiver. Complex differentially coherent versions of the sign algorithm and the signed regressor algorithm, algorithms that have a much lower computational complexity than the least-means square algorithm, are proposed and applied for CDMA interference rejection.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Alsharekh, Mohammed Fahad. "Transform domian/cyclic code shift keying system on an urban multipath channel." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1177003745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ardebilipour, Mehrdad. "Acquisition techniques for mobile CDMA systems." Thesis, University of Surrey, 2000. http://epubs.surrey.ac.uk/843192/.

Full text
Abstract:
The initial code Acquisition Techniques of Direct Sequence Spread Spectrum Systems for two categories of serial and parallel search strategies is investigated. A simple and economic scheme for coarse code acquisition of Reverse Link for UMTS (FDD-WCDMA) application is presented. The emphasis is on the performance of a new scheme (using a Surface Acoustic Wave Matched Filter) as a term of probability of false detection (pf) in code division multiple access (CDMA) systems. Knowledge of initial code uncertainty phases help to reduce the overhead of preamble on the access channel and a very simple scheme for acquisition to be determined. In the reverse link this uncertainty is due to the cell radius only. Acquisition time required for a simple serial search scheme may therefore be unacceptably large. On the other hand, for parallel acquisition using parallel branches in accordance with the chip uncertainty time region leads to a lot of hardware complexity. Initially, the effect of multiple access interference and spreading sequence length are determined for models applicable to the reverse link of a mobile communications system. Then the acquisition performance is derived using a model of a cellular mobile communication channel, which includes the effects of multiple access interference, adjacent cell interference, frequency selective Rician channel, shadowing, power control error, and vehicle speed. It is shown that the most significant factors in determining the acquisition performance are the acquisition observation interval, the number of users, and the specular to diffuse power ratio. Numerical results based on analysis of acquisition performance in mobile channel show that the proposed acquisition scheme is efficient, robust, fast and suitable for real time low cost implementation.
APA, Harvard, Vancouver, ISO, and other styles
11

Anand, M. "Low Correlation Sequences Over AM-PSK And QAM Constellations." Thesis, 2007. https://etd.iisc.ac.in/handle/2005/591.

Full text
Abstract:
Direct-Sequence Code Division Multiple Access (DS-CDMA), over the last few years, has become a popular technique and finds a place in many modern communication systems. The performance of this technique is closely linked to the signature (or spreading) sequences employed in the system. In the past, there have been many successful attempts by research groups to construct families of signature sequences that offer the potential gains promised by theoretical bounds. In this thesis, we present constructions of families of signature sequences over the AM-PSK and QAM alphabet with low correlation. In this thesis, we construct a family of sequences over the 8-ary AM-PSK constella- tion, Family AOpt(16) that is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation for complex sequences. The maximum magnitude of correlation for this family, θmax, is upper bounded by √N , where N is the period of the sequences. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM, Family A16A, and Family A16,B , with the maximum magnitude of correlation upper bounded by √2√N . We construct a family, A(M 2), of sequences over the 2m+1-ary AM-PSK constellation of period N = 2r- 1 and family size (N + 1)/2m-1 . The 2m+1-ary AM-PSK constellation is a subset of the M 2-QAM constellation with M =2m . The maximum nontrivial normalized correlation parameter is bounded above by θmax < a √N where a ranges from 1.34 in the case of M 2 = 16 to √5 for large m. Apart from low correlation values, the family possesses several interesting and useful features. In Family A(M 2), users have the ability to transmit 2m bits of data per period of the spreading sequence. The sequences in Family A(M 2) are balanced; all points from the 2m+1-ary AM-PSK constellation occur approximately equally often in sequences of long period. The Euclidean distance between the signals assigned to a particular user in A(M 2), corresponding to different data symbols, is larger than the corresponding value for the case when 2m+1-PSK modulation and spreading is used. Perhaps most interestingly, Family A(M 2) permits users on the reverse link of a CDMA system to communicate asynchronously at varying data rates by switching between different QAM constellations. Family A(M 2) is compatible with QPSK sequence families S(p) in the sense that the maximum correlation magnitude is increased only slightly if one adds sequences from (p) S(p)\ S(0) to Family A(M 2). We also construct families of sequences over AM-PSK that tradeoff data rate per sequence period and θmax for a given family size. We have extended the construction of sequences over AM-PSK constellation to construct sequences over the M 2-QAM constellation for M =2m . The QAM sequence families, Families (AM 2), have size, data rate and minimum squared Euclidean distance same as the corresponding AM-PSK construction but have higher values of θmax. Also included in the thesis are constructions for large families of sequences over the M 2-QAM alphabet.
APA, Harvard, Vancouver, ISO, and other styles
12

Anand, M. "Low Correlation Sequences Over AM-PSK And QAM Constellations." Thesis, 2007. http://hdl.handle.net/2005/591.

Full text
Abstract:
Direct-Sequence Code Division Multiple Access (DS-CDMA), over the last few years, has become a popular technique and finds a place in many modern communication systems. The performance of this technique is closely linked to the signature (or spreading) sequences employed in the system. In the past, there have been many successful attempts by research groups to construct families of signature sequences that offer the potential gains promised by theoretical bounds. In this thesis, we present constructions of families of signature sequences over the AM-PSK and QAM alphabet with low correlation. In this thesis, we construct a family of sequences over the 8-ary AM-PSK constella- tion, Family AOpt(16) that is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation for complex sequences. The maximum magnitude of correlation for this family, θmax, is upper bounded by √N , where N is the period of the sequences. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM, Family A16A, and Family A16,B , with the maximum magnitude of correlation upper bounded by √2√N . We construct a family, A(M 2), of sequences over the 2m+1-ary AM-PSK constellation of period N = 2r- 1 and family size (N + 1)/2m-1 . The 2m+1-ary AM-PSK constellation is a subset of the M 2-QAM constellation with M =2m . The maximum nontrivial normalized correlation parameter is bounded above by θmax < a √N where a ranges from 1.34 in the case of M 2 = 16 to √5 for large m. Apart from low correlation values, the family possesses several interesting and useful features. In Family A(M 2), users have the ability to transmit 2m bits of data per period of the spreading sequence. The sequences in Family A(M 2) are balanced; all points from the 2m+1-ary AM-PSK constellation occur approximately equally often in sequences of long period. The Euclidean distance between the signals assigned to a particular user in A(M 2), corresponding to different data symbols, is larger than the corresponding value for the case when 2m+1-PSK modulation and spreading is used. Perhaps most interestingly, Family A(M 2) permits users on the reverse link of a CDMA system to communicate asynchronously at varying data rates by switching between different QAM constellations. Family A(M 2) is compatible with QPSK sequence families S(p) in the sense that the maximum correlation magnitude is increased only slightly if one adds sequences from (p) S(p)\ S(0) to Family A(M 2). We also construct families of sequences over AM-PSK that tradeoff data rate per sequence period and θmax for a given family size. We have extended the construction of sequences over AM-PSK constellation to construct sequences over the M 2-QAM constellation for M =2m . The QAM sequence families, Families (AM 2), have size, data rate and minimum squared Euclidean distance same as the corresponding AM-PSK construction but have higher values of θmax. Also included in the thesis are constructions for large families of sequences over the M 2-QAM alphabet.
APA, Harvard, Vancouver, ISO, and other styles
13

Santhosam, Charles L. "CDMA Base Station Receive Co-Processor Architecture." Thesis, 2004. https://etd.iisc.ac.in/handle/2005/318.

Full text
Abstract:
Third generation mobile communication systems promise a greater data rate and new services to the mobile subscribers. 3G systems support up to 2 Mbps of data rate to a fixed subscriber and 144 Kbps of data rate to a fully mobile subscriber. Code Division Multiple Access (CDMA) is the air interface access scheme widely used in all the 3G communication systems. This access scheme has many inherent advantages m terms of noise immunity, security, coherent combining of multi path signals etc. But all these advantages come at the expense of higher complexity of the receivers. The receivers form the major portion of the processing involved in a base station. The heart of any CDMA receiver is the RAKE. The RAKE receiver separates the different multi-paths received by the antenna by using the properties of the Pseudo Random sequences. The phase and strength of each of these path signals is measured and are used by the coherent combiner, which de-rotates all the signals to a single reference and coherently combines them In general the Base station receivers make use of the top three multi-path signals ranked in terms of their signal energy Hence four RAKE fingers, each catering to single multi-path are needed for receiving a single code channel (3 for coherent combining and one for scanning). One such channel receiver requires a processing power of 860 MIPS (Mega Instructions Per Second). Some of the CDMA standards support up to 90 code channels at the same time. This means that the total processing power required at the base station is about 80 GIPS. This much of processing power will require large number of high end DSPs, which will be a very costly solution. In the current base station architectures these blocks are implemented using ASICs, which are specific to a particular standard and also the algorithms used for the different operations are fixed at the design time itself. This solution is not flexible and is not amenable for SDR (Software defined Radio) architectures for the Base stations. This thesis proposes a Co-Processor solution, which can be attached to a generic DSP or any other processor. The processor can control the Co-Processor by programming its parameter registers using memory mapped register accesses. This co-processor implements only those blocks, which are compute intensive. This co-processor performs all chip-rate processing functions involved m a RAKE receiver. All the symbol-rate functions are implemented through software in the processor. This provides more choices m selecting the algorithms for timing recovery and scanning. The algorithms can be changed through software even after the base station is installed in the field. All the inputs and outputs of the Co-Processor are passed through dual port RAMs with independent read and write clocks. This allows the Co-Processor and the processor to be running on two independent clocks. This memory scheme also increases the throughput as the reads and writes to these memories can happen simultaneously. This thesis introduces a concept of incorporating programmable PN/Gold code generators as part of the Co-Processor, which significantly reduces the amount of memory required to store the Scrambling and Spreading codes. The polynomial lengths as well as the polynomials of the code generator are programmable. The input signal memory has a bus width equal to 4 times the bus width of the IQ signal bus width (4 * 24 = 96 bits) towards the Co-Processor to meet the huge data bandwidth requirement. This memory is arranged as word interleaved memory banks. This can supply one word per memory bank on each clock cycle as long as the accessed words fall in different memory banks. The number of banks is chosen as more than twice that of the number of Correlators/ Rake fingers. This gives more flexibility in choosing the address offsets to different Correlator inputs. This flexibility allows one to use different timing recovery schemes since the number of allowable address offsets for different Correlators is more. The overall complexity of the solution is comparatively less with respect to the generic DSP based solution and much easier to modify for a different standard, when compared to the rigid ASIC based solution. The proposed solution is significantly different from the conventional way of designing the Base station with fixed ASICs and it clearly outweighs the solutions based on conventional approach in terms of flexibility, design complexity, design time and cost.
APA, Harvard, Vancouver, ISO, and other styles
14

Santhosam, Charles L. "CDMA Base Station Receive Co-Processor Architecture." Thesis, 2004. http://hdl.handle.net/2005/318.

Full text
Abstract:
Third generation mobile communication systems promise a greater data rate and new services to the mobile subscribers. 3G systems support up to 2 Mbps of data rate to a fixed subscriber and 144 Kbps of data rate to a fully mobile subscriber. Code Division Multiple Access (CDMA) is the air interface access scheme widely used in all the 3G communication systems. This access scheme has many inherent advantages m terms of noise immunity, security, coherent combining of multi path signals etc. But all these advantages come at the expense of higher complexity of the receivers. The receivers form the major portion of the processing involved in a base station. The heart of any CDMA receiver is the RAKE. The RAKE receiver separates the different multi-paths received by the antenna by using the properties of the Pseudo Random sequences. The phase and strength of each of these path signals is measured and are used by the coherent combiner, which de-rotates all the signals to a single reference and coherently combines them In general the Base station receivers make use of the top three multi-path signals ranked in terms of their signal energy Hence four RAKE fingers, each catering to single multi-path are needed for receiving a single code channel (3 for coherent combining and one for scanning). One such channel receiver requires a processing power of 860 MIPS (Mega Instructions Per Second). Some of the CDMA standards support up to 90 code channels at the same time. This means that the total processing power required at the base station is about 80 GIPS. This much of processing power will require large number of high end DSPs, which will be a very costly solution. In the current base station architectures these blocks are implemented using ASICs, which are specific to a particular standard and also the algorithms used for the different operations are fixed at the design time itself. This solution is not flexible and is not amenable for SDR (Software defined Radio) architectures for the Base stations. This thesis proposes a Co-Processor solution, which can be attached to a generic DSP or any other processor. The processor can control the Co-Processor by programming its parameter registers using memory mapped register accesses. This co-processor implements only those blocks, which are compute intensive. This co-processor performs all chip-rate processing functions involved m a RAKE receiver. All the symbol-rate functions are implemented through software in the processor. This provides more choices m selecting the algorithms for timing recovery and scanning. The algorithms can be changed through software even after the base station is installed in the field. All the inputs and outputs of the Co-Processor are passed through dual port RAMs with independent read and write clocks. This allows the Co-Processor and the processor to be running on two independent clocks. This memory scheme also increases the throughput as the reads and writes to these memories can happen simultaneously. This thesis introduces a concept of incorporating programmable PN/Gold code generators as part of the Co-Processor, which significantly reduces the amount of memory required to store the Scrambling and Spreading codes. The polynomial lengths as well as the polynomials of the code generator are programmable. The input signal memory has a bus width equal to 4 times the bus width of the IQ signal bus width (4 * 24 = 96 bits) towards the Co-Processor to meet the huge data bandwidth requirement. This memory is arranged as word interleaved memory banks. This can supply one word per memory bank on each clock cycle as long as the accessed words fall in different memory banks. The number of banks is chosen as more than twice that of the number of Correlators/ Rake fingers. This gives more flexibility in choosing the address offsets to different Correlator inputs. This flexibility allows one to use different timing recovery schemes since the number of allowable address offsets for different Correlators is more. The overall complexity of the solution is comparatively less with respect to the generic DSP based solution and much easier to modify for a different standard, when compared to the rigid ASIC based solution. The proposed solution is significantly different from the conventional way of designing the Base station with fixed ASICs and it clearly outweighs the solutions based on conventional approach in terms of flexibility, design complexity, design time and cost.
APA, Harvard, Vancouver, ISO, and other styles
15

"Binary sequence adaptation for CDMA systems." 2004. http://library.cuhk.edu.hk/record=b6073618.

Full text
Abstract:
Kwan Ho-yuet.
"April 2004."
Thesis (Ph.D.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (p. 98-[103]).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Mode of access: World Wide Web.
Abstracts in English and Chinese.
APA, Harvard, Vancouver, ISO, and other styles
16

Malan, Estian. "Multi-dimensional direct-sequence spread spectrum multiple-access communication with adaptive channel coding." Diss., 2007. http://hdl.handle.net/2263/29029.

Full text
Abstract:
During the race towards the4th generation (4G) cellular-based digital communication systems, a growth in the demand for high capacity, multi-media capable, improved Quality-of-Service (QoS) mobile communication systems have caused the developing mobile communications world to turn towards betterMultiple Access (MA) techniques, like Code Division Multiple Access (CDMA) [5]. The demand for higher throughput and better QoS in future 4G systems have also given rise to a scheme that is becoming ever more popular for use in these so-called ‘bandwidth-on-demand’ systems. This scheme is known as adaptive channel coding, and gives a system the ability to firstly sense changes in conditions, and secondly, to adapt to these changes, exploiting the fact that under good channel conditions, a very simple or even no channel coding scheme can be used for Forward Error Correction(FEC). This will ultimately result in better system throughput utilization. One such scheme, known as incremental redundancy, is already implemented in the Enhanced Data Rates for GSM Evolution (EDGE) standard. This study presents an extensive simulation study of a Multi-User (MU), adaptive channel coded Direct Sequence Spread Spectrum Multiple Access (DS/SSMA) communication system. This study firstly presents and utilizes a complex Base Band(BB) DS/SSMA transmitter model, aimed at user data diversity [6] in order to realize the MU input data to the system. This transmitter employs sophisticated double-sideband (DSB)Constant-Envelope Linearly Interpolated Root-of-Unity (CE-LI-RU) filtered General Chirp-Like (GCL) sequences [34, 37, 38] to band limit and spread user data. It then utilizes a fully user-definable, complex Multipath Fading Channel Simulator(MFCS), first presented by Staphorst [3], which is capable of reproducing all of the physical attributes of realistic mobile fading channels. Next, this study presents a matching DS/SSMA receiver structure that aims to optimally recover user data from the channel, ensuring the achievement of data diversity. In order to provide the basic channel coding functionality needed by the system of this study, three simple, but well-known channel coding schemes are investigated and employed. These are: binary Hamming (7,4,3) block code, (15,7,5) binary Bose-Chadhuri-Hocquenghem (BCH) block code and a rate 1/3 Dissertation (MEng (Computer Engineering))--University of Pretoria, 2007.
Electrical, Electronic and Computer Engineering
MEng
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography