Academic literature on the topic 'Direct shear testing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Direct shear testing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Direct shear testing"
Stasiak, M., and M. Molenda. "Direct shear testing of flowability of food powders." Research in Agricultural Engineering 50, No. 1 (February 8, 2012): 6–10. http://dx.doi.org/10.17221/4919-rae.
Full textDrnevich, VP, KJ Gan, and DG Fredlund. "Multistage Direct Shear Testing of Unsaturated Soils." Geotechnical Testing Journal 11, no. 2 (1988): 132. http://dx.doi.org/10.1520/gtj10959j.
Full textSuits, L. D., T. C. Sheahan, GA Miller, and TB Hamid. "Interface Direct Shear Testing of Unsaturated Soil." Geotechnical Testing Journal 30, no. 3 (2007): 13301. http://dx.doi.org/10.1520/gtj13301.
Full textFranklin, J. A. "Direct shear machine for testing rock joints." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 22, no. 6 (December 1985): 193. http://dx.doi.org/10.1016/0148-9062(85)90223-2.
Full textMeehan, Christopher L., Thomas L. Brandon, J. Michael Duncan, and Binod Tiwari. "Direct shear testing of polished slickensided surfaces." Landslides 7, no. 2 (February 13, 2010): 157–67. http://dx.doi.org/10.1007/s10346-010-0199-7.
Full textTang, Chien-Ting, Roy H. Borden, and Mohammed A. Gabr. "A Simplified Direct Shear Testing Procedure to Evaluate Unsaturated Shear Strength." Geotechnical Testing Journal 41, no. 2 (January 5, 2018): 20150161. http://dx.doi.org/10.1520/gtj20150161.
Full textSelig, ET, and JA Franklin. "A Direct Shear Machine for Testing Rock Joints." Geotechnical Testing Journal 8, no. 1 (1985): 25. http://dx.doi.org/10.1520/gtj10853j.
Full textKondo, Hiroshi, Yoshiaki Noda, and Noboru Sugiyama. "Trial production of dynamic direct shear testing apparatus." Journal of Terramechanics 24, no. 1 (January 1987): 120. http://dx.doi.org/10.1016/0022-4898(87)90092-9.
Full textBarla, G., M. Barla, and M. E. Martinotti. "Development of a New Direct Shear Testing Apparatus." Rock Mechanics and Rock Engineering 43, no. 1 (March 20, 2009): 117–22. http://dx.doi.org/10.1007/s00603-009-0041-5.
Full textShibuya, S., T. Mitachi, and S. Tamate. "Interpretation of direct shear box testing of sands as quasi-simple shear." Géotechnique 47, no. 4 (September 1997): 769–90. http://dx.doi.org/10.1680/geot.1997.47.4.769.
Full textDissertations / Theses on the topic "Direct shear testing"
Szymakowski, Jerry. "Direct shear testing of jointed soft rock masses." Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9573.
Full textLarsson, Jörgen. "Quality aspects in direct shear testing of rock joints." Licentiate thesis, KTH, Jord- och bergmekanik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294801.
Full textBergmassors stabilitet påverkas av bergssprickor. Bergssprickors skjuvhållfasthet behöver därför beaktas vid fastställandet av vilka laster berganläggningar skall dimensioneras mot. Skjuvhållfastheten predikteras bland annat med hjälp av brottkriterier, vilka valideras med hjälp av resultaten från skjuvtester i kontrollerad laboratoriemiljö. Kvaliteten på resultaten från testerna är därför av avgörande betydelse för med vilken noggrannhet kriterierna kommer att kunna prediktera skjuvhållfastheten. Det övergripande målet med detta arbete är att underlätta utvecklingen av förbättrade kriterier för prediktioner av bergssprickors skjuvhållfasthet. Som ett bidrag till att uppnå detta mål har två osäkerhetsfaktorer undersökts, nämligen geometrin av replikor (kopior) av bergssprickor och inverkan av testsystems normalstyvhet. Två kvalitetssäkringsparametrar för utvärdering av de geometriska skillnaderna mellan replikor och bergprov baserade på skanningdata har tagits fram. Den första parametern beskriver de morfologiska avvikelserna. Den andra parametern beskriver avvikelserna i orientering med avseende på skjuvplanet. Ett tillvägagångssätt med en effektiv systemnormalstyvhet, vilken kompenserar för inverkan av testsystemets normalstyvhet, har utvecklats, validerats och tillämpats. Med hjälp av kvalitetssäkringsparametrarna påvisas att det ar möjligt att reproducera replikor inom snäva toleranser. Genom tillämpning av tillvägagångssättet med en effektiv normalstyvhet kan felet i normallast i princip elimineras. Sammantaget stödjer resultaten framtagning av testdata med förbättrad kvalitet och därigenom underlättas även utvecklingen av skjuvhållfasthetskriterier med förbättrad noggrannhet.
QC 210518
Cheng, Pei-fen Caral, and 鄭佩芬. "Project report on direct shear tests for rock joints." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B42576659.
Full textSaffari-Shooshtari, Nader. "Constant normal stiffness direct shear testing of chalk-concrete interfaces." Thesis, University of Surrey, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328819.
Full textCox, Melissa Reiko Brooke. "The Influence of Grain Shape on Dilatancy." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195563.
Full textToufigh, Vahid. "Testing and Evaluation of Confined Polymer Concrete Pile with Carbon Fiber Sleeve." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/293492.
Full textAbreu, Ana Elisa Silva de. "Investigação geofísica e resistência ao cisalhamento de resíduos sólidos urbanos de diferentes idades." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18132/tde-03082015-115017/.
Full textField and laboratory tests were combined to characterize some in-place geotechnical properties of the waste body in the São Carlos Sanitary Landfill (SCSL). The investigation was carried out using hollow stem auger soundings and seismic geophysical methods in the field, and large-scale direct shear testing in the laboratory. The field investigation revealed two strata with different geotechnical properties and they could be related to the different operational phases of the landfill (controlled landfill and sanitary landfill). Moisture content, seismic wave velocities and in-place unit weight were systematically lower and less scattered in the upper stratum than in the lower stratum. The upper stratum was operated as a sanitary landfill and the lower stratum was operated as a controlled landfill. The investigations with geophysical seismic methods were essential for identifying the two strata and allowed for the calculation of the Poisson ratio and the small strain shear modulus (Go) of the waste body. The Poisson ratio showed no sensibility to the waste stratigraphy, but Go values were significantly higher in the lower stratum. Moreover, the results of two different geophysical methods, namely crosshole and multichannel analysis of surface waves (MASW), could be compared. An attempt was made to estimate overboring using a volume substitution method by filling the boreholes with gravel. This aimed at incorporating this aspect in the calculations of the MSW in-place unit weight. Nevertheless, the borings tended to cave in as soon as the augers were removed and this prevented the evaluation of the overboring. Moreover, the hollow stem auger tended to segregate the larger components of the waste and to bring only the smaller ones to the surface. Despite all these difficulties, average values for the MSW inplace unit weight were be calculated (9 to 15 kN/m3). In the laboratory, large-scale direct shear tests (500 x 500 mm2) were performed to provide an insight on the shear strength response of municipal solid waste (MSW) of different landfilling ages. The test samples were collected from the SCSL, a dumpsite and an experimental landfill. Their landfilling ages ranged from 2 to 25 years. Physico-chemical characterization of the samples revealed that most of them were subjected to the metanogenesis degradation phase, in spite of their different landfilling ages and burial conditions (operational characteristics of the deposits, decomposition environment and confining pressures). Only the newest one (2 years old sample) was subjected to an earlier stage of degradation. In the direct shear tests, all samples showed similar stress-strain curves, with continuous strain hardening and no identifiable maximum stress, despite the large displacements. The influence of sampling method, sample preparation and sample gravimetric composition on the calculated shear resistance parameters is discussed. For a 100-mm displacement the shear resistance of the less degraded waste (2 years of landfilling) is best characterized by cohesion = 13.7 kPa and friction angle = 22º. The more degraded wastes (5 to 25 years old samples) are best characterized by cohesion = 4.4 kPa and friction angle = 30º. The tests were performed with initial normal stresses of 50, 150 and 250 kPa. Specific large direct shear tests were performed to evaluate anisotropy in the MSW shear response. The test samples had the fibrous materials oriented perpendicular or parallel to the horizontal shear surface. Results confirmed the expected anisotropy by showing a hardening behaviour that was more pronounced when the fibrous materials were oriented perpendicular to the shear plan.
"Direct shear strength testing of unsaturated soils." Thesis, 1986. http://hdl.handle.net/10388/etd-02292012-125227.
Full textHao-YiHsu and 徐浩怡. "Direct Shear Testing and Modeling on The Behavior of Sand under Cyclic Loading." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/81472150970487334386.
Full text國立成功大學
土木工程學系
105
Cyclic direct shear tests on a river sand were carried out to study the relationship between shear stress and the shear displacement by using a medium-scale direct shear test apparatus. Two models, namely, the modified Ramberg-Osgood (R-O) model and the modified Hardin-Drnevich (H-D) model, were used to simulate the behavior of sands subject to direct shear. Model parameters were derived based on curve fitting techniques, and the model-generated stress-displacement relationships were compared with the experiment ones. Results of cyclic direct shear test showed that strain hardening is valid up to a shear displacement of about 10mm, regardless of the number of cycles and the density of sands. The modified H-D model satisfactorily simulates the behavior of sand subjected cyclic shearing under relatively small displacement states. This is not true when using modified R-O method. Under large displacement condition, (shear displacements larger than 10mm), the modified R-O method outperformed the modified H-D method in the sense that the modified R-O method rendered hysteresis loops similar to those obtained in the tests.
Rutherford, Cassandra Jane. "Development of a Multi-directional Direct Simple Shear Testing Device for Characterization of the Cyclic Shear Response of Marine Clays." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10743.
Full textBooks on the topic "Direct shear testing"
United States. Bureau of Reclamation. Denver Office. Materials Engineering Branch., ed. Direct shear tests used in soil-geomembrane interface friction studies. Denver, Colo: Materials Engineering Branch, Research and Laboratory Services Division, Denver Office, U.S. Bureau of Reclamation, 1994.
Find full textBook chapters on the topic "Direct shear testing"
Mir, Bashir Ahmed. "Direct Shear Test (DST) for Soils." In Manual of Geotechnical Laboratory Soil Testing, 281–306. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003200260-14.
Full textMarkou, Ioannis N. "Direct Shear Testing of Sand – Geotextile Interfaces." In Sustainable Civil Infrastructures, 1–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63570-5_1.
Full textEstaire, Jose, and María Santana. "Large Direct Shear Tests Performed with Fresh Ballast." In Railroad Ballast Testing and Properties, 144–61. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2018. http://dx.doi.org/10.1520/stp160520170137.
Full textYoungblood, Jimmy, and J. P. Kline. "Direct Shear Testing Performed on Multi-Component GCLs With Laminated/Coated Side." In Current and Future Practices for the Testing of Multi-Component Geosynthetic Clay Liners, 1–8. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2013. http://dx.doi.org/10.1520/stp156220120096.
Full textAhmadi, M., M. Moosavi, and M. K. Jafari. "Water Content Effect on the Fault Rupture Propagation Through Wet Soil-Using Direct Shear Tests." In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), 131–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52773-4_14.
Full textMonnet, Jacques. "Direct Shear TestsIn Situ." In In Situ Tests in Geotechnical Engineering, 157–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145592.ch8.
Full textPetley, D. N., and A. L. Clark. "14.28 Direct Shear Testing in Geomorphology." In Treatise on Geomorphology, 328–37. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-374739-6.00397-3.
Full text"Large-scale direct shear testing of geocell reinforced soil." In Advances in Transportation Geotechnics, 773–78. CRC Press, 2008. http://dx.doi.org/10.1201/9780203885949-118.
Full textChen, Y., Y. Wang, Z. Hou, and C. Wang. "Large-scale direct shear testing of geocell reinforced soil." In Advances in Transportation Geotechnics, 759–64. CRC Press, 2008. http://dx.doi.org/10.1201/9780203885949.ch105.
Full textMatasović, Neven, Thomas A. Williamson, and Robert C. Bachus. "Cyclic direct simple shear testing of OII landfill solid waste." In Geotechnical Hazards, 441–48. CRC Press, 2020. http://dx.doi.org/10.1201/9781003078173-53.
Full textConference papers on the topic "Direct shear testing"
Stark, Timothy D., Robert H. Swan, and Zehong Yuan. "Ballast Direct Shear Testing." In 2014 Joint Rail Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/jrc2014-3714.
Full textYu, Xinbao, Shunying Ji, and Kerop D. Janoyan. "Direct Shear Testing of Rockfill Material." In GeoShanghai International Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40862(194)19.
Full textNicks, Jennifer, and Michael Adams. "Large-Scale Direct Shear Testing of Common Open-Graded Aggregates." In Geo-Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413272.005.
Full textLaRocque, Christopher J., Jorge G. Zornberg, and Richard Williammee. "Direct Shear Testing of Tire Bales for Soil Reinforcement Applications." In Geo-Frontiers Congress 2005. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40782(161)17.
Full textFonov, Sergey, Jimmy Crafton, G. Jones, and Vladimir Fonov. "Direct Measurements of the Shear Force Fields Using Elastic Polymer Films." In 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2305.
Full textKwon, Soonwook, Yuri Lee, and Bongtae Han. "Advanced Micro Shear Testing for Solder Alloy Using Direct Local Measurement." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35325.
Full textGu, Xue F., Julian P. Seidel, Chris M. Haberfield, and Abdelmalek Bouazza. "Wear of Sandstone Surfaces During Direct Shear Testing of Sandstone/Concrete Joints." In Geo-Frontiers Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40778(157)9.
Full textNicks, Jennifer E., Thomas Gebrenegus, and Michael T. Adams. "Interlaboratory Large-Scale Direct Shear Testing of Open-Graded Aggregates: Round One." In International Foundations Congress and Equipment Expo 2021. Reston, VA: American Society of Civil Engineers, 2021. http://dx.doi.org/10.1061/9780784483435.035.
Full textKhan, M. A., M. S. Hossain, M. S. Khan, S. Samir, and Al Aramoon. "Impact of Wet-Dry Cycles on the Shear Strength of High Plastic Clay Based on Direct Shear Testing." In Geotechnical Frontiers 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480472.065.
Full textSadeghi, Hamed, Fardin Jafarzadeh, and Charles W. W. Ng. "A VET-Based Direct Shear Box for Testing Unsaturated Soils at High Suctions." In Second Pan-American Conference on Unsaturated Soils. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481684.027.
Full textReports on the topic "Direct shear testing"
Lovell, Alexis, Garrett Hoch, Christopher Donnelly, Jordan Hodge, Robert Haehnel, and Emily Asenath-Smith. Shear and tensile delamination of ice from surfaces : The Ice Adhesion Peel Test (IAPT). Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41781.
Full text